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Abstract

Two-scale simulations are often employed to analyze the effect of the microstructure on a component’s macroscopic
roperties. Understanding these structure–property relations is essential in the optimal design of materials for specific
pplications. However, these two-scale simulations are typically computationally expensive and infeasible in multi-query
ontexts such as optimization and material design. To make such analyses amenable, the microscopic simulations can be
eplaced by inexpensive-to-evaluate surrogate models. Such surrogate models must be able to handle microstructure parameters
n order to be used for material design. A previous work focused on the construction of an accurate surrogate model for

icrostructures under varying loading and material parameters by combining proper orthogonal decomposition and Gaussian
rocess regression. However, that method works only for a fixed geometry, greatly limiting the design space. This work
ence focuses on extending the methodology to treat geometrical parameters. To this end, a method that transforms different
eometries onto a parent domain is presented, that then permits existing methodologies to be applied. We propose to solve
n auxiliary problem based on linear elasticity to obtain the geometrical transformations. The method has a good reducibility
nd can therefore be quickly solved for many different geometries. Using these transformations, combined with the nonlinear
icroscopic problem, we derive a fast-to-evaluate surrogate model with the following key features: (1) the predictions of the

ffective quantities are independent of the auxiliary problem, (2) the predicted stress fields automatically fulfill the microscopic
alance laws and are periodic, (3) the method is non-intrusive, (4) the stress field for all geometries can be recovered, and
5) the sensitivities are available and can be readily used for optimization and material design. The proposed methodology
s tested on several composite microstructures, where rotations and large variations in the shape of inclusions are considered.
inally, a two-scale example is shown, where the surrogate model achieves a high accuracy and significant speed up, thus
emonstrating its potential in two-scale shape optimization and material design problems.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Reduced order modeling; Geometrical transformation; Proper orthogonal decomposition; Computational homogenization; Gaussian
rocess regression; Shape optimization

∗ Corresponding author at: Centre for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science,
Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.

E-mail addresses: t.guo@tue.nl (T. Guo), f.a.b.silva@tue.nl (F.A.B. Silva), o.rokos@tue.nl (O. Rokoš), k.p.veroy@tue.nl (K. Veroy).
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1. Introduction

With recent advances in additive manufacturing and metamaterials, tailoring the microstructure of materials to
obtain desired engineering properties has become possible and crucial. In general, the structure–property relations
of such microstructures are not well understood and need to be numerically investigated by fully resolving
all microstructural details. Computational homogenization (CH) is typically employed, where the macro- and
microstructure are modeled simultaneously. This results in a two-scale formulation which is either solved by a
nested Finite Element (FE) scheme, also known as FE2 (see, e.g. [1–5]), or by a combination of the FE method
with a Fast Fourier Transform (FFT) solver, also known as FE-FFT (see, e.g. [6,7]).

Due to high computational costs involved in solving two-scale simulations, computational homogenization cannot
be readily used for material design or optimization problems, where numerous forward simulations must be run. For
this reason, several methods have been proposed in the literature that attempt to replace the parametric microscopic
model with a fast-to-evaluate while accurate surrogate model. Most of these methods require training data collected
by running full microscopic simulations for different parameters. They generally differ in the following aspects:

1. the amount of data needed for obtaining an accurate surrogate model,
2. the ability to make physically sound predictions, and
3. the way they handle parameters, which can be classified as loading parameters (the applied macroscopic

strain) or microstructure descriptors (e.g., material properties of individual phases, volume ratios, etc.). If
only loading parameters can be handled, the surrogate model has no design space and can only be used for
forward computations.

One popular framework, termed data-driven computational mechanics, was introduced in Kirchdoerfer et al. [8]
and extended in follow-up works; see, e.g., [9,10]. Given a collection of stress–strain pairs, this method uses a
distance minimizing scheme to directly find the corresponding global stress and strain states of the macroscopic
system that satisfy the balance laws as closely as possible, and hence bypasses the empirical material modeling step.
This method typically requires very large datasets to be accurate and cannot handle any microstructure descriptors.

Another popular approach is to learn an effective constitutive model from the available data. Usually, neural
networks are employed for this regression. In [11–13], the authors used recurrent neural networks, a special
type of neural network, to learn a path-dependent elasto-plastic model for a composite RVE. Additionally, in
Mozaffar et al. [13], microstructure descriptors were included to predict the stresses for a class of composite
RVEs. Similarly, in Le et al. [14], the authors used neural networks to learn a constitutive model for a nonlinear
elastic microstructure, considering also microstructural parameters. Recently, this methodology was also applied
on mechanical metamaterials, where the authors considered topological microstructural parameters [15,16]. Despite
the successes of this approach, it has two inherent drawbacks: requirements of large datasets for training and no
possibility to guarantee that predictions fulfill physical laws.

To overcome these problems, several works recently proposed to embed the physics in neural networks by
choosing special network architectures. In [17], by assuming a specific form of the strain energy density function,
the authors incorporated theoretical knowledge from materials theory in order to predict physical results. A similar
idea was implemented in [18], where a library of strain energy density functions, taken from literature, was used
as the basis for the approximated constitutive model. Although these methods fulfill physics by construction and
can treat some material parameters, they still require a large amount of data for the training phase, and the material
parameters often have a rather difficult interpretation, i.e., different from microstructure descriptors such as fiber
size or volume ratio.

The above-mentioned techniques essentially construct the surrogate model in a purely data-driven fashion that
neglects the microscopic simulation entirely. On the other hand, also approaches exist that accelerate the microscopic
simulation. One example is the Transformation Field Analysis (TFA) which was proposed in Dvorak [19] and later
extended to the Nonuniform Transformation Field Analysis (NTFA) in Michel and Suquet [20]. This method is
specifically suited for models including internal variables such as plasticity. The internal variables are clustered
together into groups to reduce the number of degrees of freedom and averaged evolution laws are developed for
each group. A similar approach, termed self-consistent clustering analysis [21], was developed that finds these
clusters from linear elastic precomputations. These methods require only little data and yield physical predictions.

However, they are limited to a fixed microstructure and can therefore not be used for microstructural design.
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Another popular technique for dimensionality reduction is the Reduced Basis (RB) method [22,23], which can be
pplied to general parametric partial differential equations (pPDEs). In this method, the solution to a PDE is sought
n a reduced basis spanned by global parameter-independent basis functions. Given a collection of precomputed
imulations, often referred to as snapshots, the proper orthogonal decomposition (POD) can be employed to find
he reduced basis. The solution of the PDE for any parameter value can then be found by either solving the
educed problem (see, e.g., [24–27]) or by using a regression-based approach (see, e.g., [28–31]). In the case where
he PDE allows an affine decomposition, the method permits an offline–online decomposition and the reduced
et of equations can be solved very efficiently online. However, in the case of a nonlinear problem, an affine
ecomposition usually does not exist and a further approximation called hyperreduction needs to be implemented.
n the context of computational homogenization, Hernandez et al. used a discrete empirical interpolation method
DEIM) (see, e.g. [32,33]) on the stress field to recover the affine decomposition and accelerated an elasto-plastic
VE simulation [24]. Unfortunately, the reduced stiffness matrix is not symmetric. Soldner et al. compared three
ifferent hyperreduction approaches for a hyperelastic microstructure and showed that the non-symmetric stiffness
atrix leads to convergence problems in several scenarios [25].
Instead of solving the reduced system, the regression-based approach directly predicts the parameter-dependent

oefficients. With the already computed POD basis, the solution field can therefore be directly obtained. In our
revious work [31], we successfully utilized this approach on a hyperelastic composite microstructure with varying
tiffness of the constituents, by combining POD with Gaussian Process Regression (GPR) [34]. However, this
ethod is not able to treat geometrical parameters such as fiber radius or shape of inclusion, which is important

or material design, where optimized shapes are sought.
Within the POD framework, geometrical parameters are typically addressed through transformations that map

ach snapshot onto a parent domain. The surrogate model can then be constructed and solved on the parent domain.
here are typically two kinds of methods to describe such domain transformations: space deformations and surface-
ased deformations [35]. For the former, popular techniques comprise the Free Form Deformation (FFD) [36] and
adial Basis Functions (RBF) [37], where the transformation maps are governed by the movement of control points.
hese methods have been used in the context of RB in various papers, see, e.g., [38–45]. The biggest benefit is that

he auxiliary problem that determines the transformation map is independent of the discretization mesh of the full
imulation and depends only on the number of control points used. However, since the deformation can only be
rescribed at the control points, many points might be needed to sufficiently describe complicated transformations.
oreover, the boundary nodes on opposite edges of the simulation mesh of a periodic domain, which is usually

ssumed for a RVE, should be transformed identically, which might not be straightforward to enforce.
For surface-based deformations, knowledge of a parent simulation mesh is needed and then an auxiliary linear

lliptic PDE problem is solved to obtain the transformation. Such deformations have been used in shape optimization
see, e.g., [46]) and for finite volume schemes (see, e.g., [47]). These auxiliary problems are typically more expensive
o solve than the ones arising for the space deformation methods, since they scale with the full simulation mesh.
n the other hand, they allow for full flexibility in terms of deformations, and periodicity can be easily enforced.
oreover, this auxiliary problem can be reduced with standard RB techniques [45], resulting in an efficient online

tage. Hence, in this work, we propose an auxiliary problem based on linear elasticity to obtain the transformation
aps and show how a fast-to-evaluate effective constitutive model can be constructed for a nonlinear microscopic

roblem. This surrogate model has the following features:

1. the predictions of the effective quantities are independent of the auxiliary problem,
2. the predicted stress fields automatically fulfill the microscopic balance laws and the periodic boundary

conditions,
3. it can handle both loading parameters and microstructure descriptors (e.g., stiffness and shapes of the

constituents) and thus can be used for material design,
4. it is non-intrusive and can be easily implemented into a macroscopic solver, and
5. the microscopic stress field can be recovered and visualized.

The remainder of this paper is organized as follows. Section 2 introduces the multi-scale problem based on first-
rder computational homogenization. In Section 3, the construction of the surrogate model for the microscopic
imulation is presented in depth. Then, in Section 4, the proposed method is validated on multiple composite
icrostructures, where variations in the shape of the inclusions are considered, and where a full two-scale example
s presented. Section 5 concludes this work with a summary on the findings and some final remarks.

3
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In this work, the following notational convention is adopted. To differentiate between macroscopic and micro-
copic variables, an overline is added for the macroscopic ones. Italic bold symbols are used for coordinates X

and vectorial or tensorial fields, such as the displacement u or stress field P . Upright bold symbols are used for
algebraic vectors and matrices, such as the identity matrix I or the macroscopic deformation gradient at a fixed
macroscopic point F̄. A field quantity u for given parameters µ is denoted as u(X; µ). Given second-order tensors
A and B, fourth-order tensor C, and vector v, the following operations are used: AB = Ai j B jk , A : B = Ai j Bi j ,
A ⊗ B = Ai j Bkl , A ⊗ v = Ai jvk , A : C : B = Ai j Ci jkl Bkl and Av = Ai jv j , where the Einstein summation
convention is used.

2. Problem statement

When considering engineering systems with complex microstructures, the micro- and macrostructure are both
modeled and solved simultaneously in a coupled manner. Governing equations at the level of individual scales are
formulated as described below.

2.1. Macroscopic problem

Consider a solid body in the reference configuration Ω̄0. Under prescribed boundary conditions, every point
X̄ ∈ Ω̄0 is mapped by a deformation Φ̄ onto x̄ = Φ̄(X̄) ∈ Ω̄ , where Ω̄ is the current configuration. The displacement
is then defined as ū(X̄) := x̄ − X̄ = Φ̄(X̄) − X̄ . The governing partial differential equation (PDE) describing the
effective physics of the system is given by the quasi-static linear momentum balance,

Div P̄ + B̄0 = 0 on Ω̄0,

P̄ N̄0 = t̄0 on ∂Ω̄ N
0 , and (1)

ū = ū0 on ∂Ω̄ D
0 ,

where Div denotes the divergence operator with respect to the reference configuration, P̄ is the macroscopic first
Piola–Kirchhoff (PK1) stress tensor, B̄0 are the macroscopic body forces, N̄0 is the outward normal on the surface
of the body, t̄0 and ū0 are the prescribed tractions and displacements, and ∂Ω̄ N

0 , ∂Ω̄ D
0 denote the Neumann and

Dirichlet boundaries with ∂Ω̄0 = ∂Ω̄ N
0 ∪ ∂Ω̄ D

0 and ∂Ω̄ N
0 ∩ ∂Ω̄ D

0 = ∅. The stress tensor P̄ is a nonlinear operator
that in general depends on parameters µ and acts on the deformation gradient F̄ which is defined as

F̄ :=
∂ x̄
∂ X̄

= I +
∂ ū
∂ X̄

, (2)

ith I the identity matrix. The weak form of Eq. (1) is given as

Ḡ :=

∫
Ω̄0

∂δū
∂ X̄

: P̄dV −

∫
Ω̄0

B̄0 · δūdV −

∫
∂Ω̄N

0

t̄0 · δūd A = 0, ∀δū ∈ H 1
0 (Ω̄0), (3)

here H 1
0 (Ω̄0) = {v ∈ H 1(Ω̄0) | v = 0 on ∂Ω̄ D

0 } is the test function space with H 1(Ω̄0) a Hilbert space, and a
olution for the displacement, ū ∈ H 1(Ω̄0), is sought that fulfills ū = ū0 on ∂Ω̄ D

0 . For the Newton–Raphson method,
he Gâteaux derivative of Ḡ at the current deformation ū in the direction ∆ū is needed,

DḠ
⏐⏐
ū · ∆ū =

∫
Ω̄0

∂ (δū)
∂ X̄

: Ā :
∂∆ū
∂ X̄

dV, (4)

here Ā :=
∂ P̄
∂ F̄

is the fourth-order stiffness tensor. To find a solution to this problem, a material model needs

o be specified, also known as a constitutive law, which relates the stress tensor P̄ to the deformation gradient
F̄ given a set of parameters µ (e.g., material, geometry, or loading). This can be an empirical law, e.g., obtained
y fitting experimental data; however, finding an empirical law with meaningful parameters is often rather difficult.
urthermore, phenomenological laws are often insufficiently rich to capture the full complexity of the microstructural
ehavior. Therefore, instead, homogenization techniques are used, where a microscopic problem, defined on a
epresentative volume element (RVE), is solved for an effective stress P̄ and stiffness Ā, given the macroscopic
eformation gradient F̄ and a set of parameters µ, resulting in a two-scale formulation. A visualization of the
wo-scale simulation is shown in Fig. 1.
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Fig. 1. Coupling of two scales. (a) In every macroscopic point the macroscopic deformation gradient is used to specify the microscopic
roblem. (b) The microscopic problem is then solved to obtain a microscopic stress field. (c) The stress field is subsequently averaged to
btain the effective stress and stiffness which are transferred back to the macroscale. Note that only the effective stress and stiffness are
eeded for the solution of the macroscopic problem.

emark 2.1. Utilizing the polar decomposition, the deformation gradient F̄ can always be multiplicatively
ecomposed into a rotation R̄ and stretch tensor Ū . Then, the stretch tensor Ū is used to evaluate the effective
tress and stiffness. To obtain the effective stress and stiffness with respect to the deformation gradient F̄, the
uantities can be rotated accordingly with R̄, for details see [48]. The advantage of this decomposition is that the
umber of loading parameters is reduced, since the stretch tensor Ū is symmetric, unlike F̄.

.2. Microscopic problem

In first order homogenization, the microscopic displacement field u(X̄, X), with X̄ and X denoting the
acroscopic and microscopic coordinates, is assumed to consist of a macroscopic mean field (F̄(X̄) − I)X and
zero-mean microscopic fluctuation field w(X̄, X), i.e.

u(X̄, X) = (F̄(X̄) − I)X + w(X̄, X), (5)

ith the macroscopic deformation gradient F̄(X̄) depending only on the macroscopic point X̄ . For conciseness, in
he following the dependence on X̄ is omitted and the following equations are given for a fixed macroscopic point
X̄ . The microscopic deformation gradient then reads

F(X) := I +
∂ u
∂ X

= F̄ +
∂w

∂ X
, (6)

ith

⟨F⟩ = F̄, (7)

here ⟨(•)⟩ := |Ω |
−1 ∫

Ω (•)dV denotes the averaging operator with |Ω | the volume of the RVE Ω . The microscopic
overning PDE has the same shape as Eq. (1) and is defined on the RVE Ω :

DivP = 0 on Ω ,

u+
− u−

= (F̄ − I)(X+
− X−) on ∂Ω , (8)

here the body forces are neglected, P denotes the microscopic PK1 stress, and periodic boundary conditions are
rescribed, with (•)+ and (•)− denoting a quantity on opposite boundaries of the RVE. The weak form is then given
5
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G =

∫
Ω

∂δu
∂ X

: PdV = 0, ∀δu ∈ H 1
0 (Ω ), (9)

and the Gâteaux derivative in the direction ∆u around the current state u is given by

DG|u · ∆u =

∫
Ω

∂ (δu)
∂ X

: A :
∂∆u
∂ X

dV . (10)

he periodic boundary conditions can be enforced by using either Lagrange multipliers [4] or the condensation
ethod [49].
In this work, we model each phase of the microstructure as a hyperelastic Neo-Hookean material with strain

nergy density function

W (F, λ) = C1(Tr(C) − 3 − 2 ln J ) + D1(J − 1)2, (11)

here C1 and D1 are the material parameters stored in λ = [C1, D1]T , Tr(•) denotes the trace operator, C = FT F
he right Cauchy–Green deformation tensor and J = det(F) is the determinant of F. The material parameters C1

nd D1 can be rewritten into the corresponding Young’s modulus E and Poisson’s ratio ν with

E =
2C1(3D1 + 2C1)

C1 + D1
, ν =

D1

2(C1 + D1)
. (12)

he stress and stiffness tensor are found by differentiating Eq. (11):

P =
∂ W
∂ F

, A =
∂ P
∂ F

. (13)

fter solving the microscopic problem, the effective stress P̄ can be obtained by averaging the microscopic stress,
.e.,

P̄ = ⟨P⟩ . (14)

owever, computing the effective stiffness Ā is more complicated, since

⟨A⟩ ̸= Ā; (15)

ee, e.g., [50]. Different ways of computing a consistent effective stiffness have been derived in [4,49]. Another
ossible way is to numerically approximate it with a finite difference scheme [51].

. Surrogate modeling

Since the microscopic problem needs to be solved at every quadrature point of the macroscopic problem in
ach Newton iteration, running even a single full two-scale simulation is expensive. In multi-query contexts such
s optimization or material design, it is therefore needed to accelerate the simulation. Several methods have been
roposed to replace the microscopic model with a cheap-to-evaluate surrogate model. One of the most powerful tools
or dimensionality reduction is the so-called Reduced Basis (RB) method. The reduced basis is often obtained by
mploying a Proper Orthogonal Decomposition (POD). Even though powerful for loading and material parameters,
eometrical parameters cannot be easily treated since the snapshots generally need to be transformed first onto a
arent domain for accurate approximations. To address this problem, we present in this section a surface-based
eformation method for finding such geometrical transformations by solving an auxiliary problem based on linear
lasticity. We then subsequently show how to construct the surrogate model and replace the microscopic simulation.

.1. Proper orthogonal decomposition

For convenience, we differentiate between macroscopic loading parameters Ū, material parameters λ and
eometrical parameters µ. Given a set of snapshots {P i

}
Ns
i=1 ∈ Vh , where Vh is a discretized function space with

imV = N , N is the number of snapshots and P i is the field variable corresponding to a given choice of
h s

6
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parameters (Ūi , λi , µi ), the proper orthogonal decomposition utilizes the correlation between the snapshots to find
n optimal subspace in Vh . Then, the field variable P can be approximated with

P(X; Ū, λ, µ) ≈

N∑
n=1

αn(Ū, λ, µ)Bn(X), (16)

here the Bn(X) are global parameter-independent basis functions, αn(Ū, λ, µ) are parameter-dependent coeffi-
ients, and N is the number of basis functions, where, ideally, N ≪ N . More details on the computation of the
asis functions Bn(X) can be found in [31].

.2. Transformation of snapshots

For geometrical parameters, a reduced basis obtained with POD will in general perform poorly and might exhibit
rtificial oscillatory effects [52]. Furthermore, changing the geometry will also affect the simulation mesh, leading
o incompatible snapshots, since the field variable is only known at different discrete points and some type of
xtrapolation and interpolation needs to be adopted. In order to apply POD on such a set of snapshots, one would first
eed to interpolate each snapshot onto the same underlying grid of discrete points, leading to additional interpolation
rrors. To overcome these issues, the snapshots can be transformed onto a parent domain first. In most existing
orks, such transformations are obtained with space deformation techniques (see, e.g., [38–44]) relying only on a

ew control points. The biggest advantage of these methods is that obtaining the transformation map only scales
ith the number of control points and is independent of the original simulation mesh. However, several control
oints might be needed to describe complicated geometries.

In the case of surface-based deformation techniques, an auxiliary diffusion-type PDE problem is posed and solved
n the simulation mesh of the original problem. Hence, the transformation map has exactly the same flexibility as the
olution field in the original simulation. Furthermore, one can ensure by construction that the obtained transformation
s a bijective map. To achieve these properties, we propose to find the transformations by solving an auxiliary
roblem based on linear elasticity, which is closely related to techniques presented in [35,46,47]. Even though the
uxiliary problem formulated this way is more expensive to solve than the one arising from space deformation
echniques, the solution can be substantially accelerated with standard reduced basis (RB) methods, as shown in
ection 3.2.1 below.

The main idea is as follows: for any geometrical parameterization, the movement of certain parts of the geometry
s known, while other parts are fixed. This movement can be prescribed onto a parent mesh and then an auxiliary
roblem is solved to obtain the transformation map for all geometrical parameters. The example below illustrates
his approach.

D RVE with elliptical inclusion. Consider a RVE defined on Ω = [0, 1]2 consisting of an elliptical inclusion
embedded in a homogeneous matrix. The shape of the inclusion is parameterized, i.e., the major and minor axis
can be changed. Assuming a parent domain Ω p with a given circular inclusion, it can be deformed into any of the
parameterized domains Ωµ, by moving the points on the circular interface into the shape of the elliptical inclusion
while keeping the outer boundaries constant, see Fig. 2. By defining this transformation map as

Φµ : Ω p
→ Ωµ, X p

↦→ Xµ
= Φµ(X p) = X p

+ d(X p
; µ) (17)

ith d the transformation displacement, this can now be translated into the following linear-elastic auxiliary
roblem:

Div

(
C :

1
2

(
∂d

∂ X p +

(
∂d

∂ X p

)T
))

= 0 in Ω p, (18a)

d = 0 on ∂Ω p, (18b)

d = Xµ(X p) − X p on ∂Ω
p

int, (18c)

here ∂Ω p
= ∂Ω

p
L ∪ ∂Ω

p
R ∪ ∂Ω

p
B ∪ ∂Ω

p
T denotes the union of the left, right, bottom and top RVE boundaries, and

Xµ(X p) is known for all points on the parent interface ∂Ω
p

int. The elasticity tensor C is assumed to be constant

hroughout the whole domain, assumed in the form of Hooke’s law, and specified by the Young’s modulus and

7
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Fig. 2. Definition of parent and parameterized domain. The transformation map Φµ maps from the parent Ω p to the parameterized Ωµ

domain. The transformation displacement d on the boundaries is fixed. The points on both the parent ∂Ω
p
int and parameterized interface

∂Ω
µ
int are known and used to prescribe the transformation along the interface. As an example, the indicated point X p in the parent domain

s displaced onto the indicated point Xµ in the parameterized domain.

oisson’s ratio ξ . Since the problem is cast in a purely geometric manner, the Young’s modulus has no influence on
he transformation map, as it only changes the magnitude of the stresses that are of no interest here. The Poisson’s
atio ξ changes the compressibility of the material, hence affecting the transformation, and its influence on the
pproximation will be investigated in Section 4. The boundary condition in Eq. (18b) is chosen such that the
arameterized domain Φµ(Ω p) = [0, 1]2 remains the same, i.e., covers the parent domain Ω p. This also means
hat the transformation preserves the volume, i.e. |Ω p

| = |Φµ(Ω p)|. Moreover, this way a periodic quantity remains
eriodic after transformation. Finally, Eq. (18c) prescribes the transformation displacements along the interface to
eform the circle into an ellipse.

emark 3.1. In principle, one could replace Eq. (18b) with periodic boundary conditions and fix the RVE at the
orner points to allow more flexible transformations. However, the added complexity did not yield any significant
mprovement in accuracy in our test problems.

.2.1. Discretization and numerical solution of auxiliary problem
Discretizing the auxiliary problem in Eq. (18) yields a linear system of equations

Ad = b(µ), (19)

here the size of A, d and b(µ) scale with the full mesh dimensionality N and Eq. (19) needs to be solved for many
ight-hand sides, where each solution is typically computationally expensive. However, there are several ways to
ccelerate the solution: since the stiffness matrix A does not depend on the parameters µ and is symmetric positive
efinite, for moderate values of N , a Cholesky decomposition A = LLT can be computed once and then a forward
nd backward substitution can be used to solve Eq. (19) for any b(µ). For even larger values of N , POD can be
sed to find a reduced basis for the transformation displacement d = Vd̂ with dim(d̂) = N ≪ N and the reduced

system is obtained via a Galerkin projection, i.e.,

VT AVd̂ = VT b(µ), (20)

⇒ Âd̂ = VT b(µ), (21)

here the reduced stiffness matrix Â := VT AV only needs to be computed once. In Section 4, it will be shown
hat N is equal to the number of geometrical parameters µ. However, as pointed out in [45], the term on the right
and side VT b(µ) is in general not affinely decomposable, meaning that for each new value of µ, a matrix–vector
8
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product VT b(µ) must be computed which depends linearly on the full problem size O(N ). If this is prohibitive,
then a discrete empirical interpolation method [32,33] could be used to approximate b(µ) and then the complexity
of the solution of the auxiliary problem becomes independent of N .

After solving Eq. (19), the transformation displacements d(X p
; µ) are specified everywhere and hence the map

µ is obtained. To obtain the snapshots on the parent domain P p(X p), the original snapshots P(Xµ), computed
n the parameterized domain Ωµ, have to be evaluated at the transformed parent coordinates, i.e.,

P(Xµ) = P(Φµ(X p)) =: P p(X p). (22)

emark 3.2. If the original snapshot P(Xµ) is obtained on an independent mesh, one needs to interpolate it onto the
ransformed parent coordinates Φµ(X p). However, this interpolation introduces non-physical effects, i.e., periodicity
nd/or linear momentum balance might not be fulfilled anymore. To ensure a physical transformation, one can use
he auxiliary problem in Eq. (18) to generate a simulation mesh for the physical simulation, because that way the
napshots are directly found on the transformed parent coordinates and no interpolation step is needed anymore.

.3. Surrogate model for microsimulation

In order to replace the microscopic simulation, a surrogate model for the effective stress and stiffness is required,
hich represents an effective constitutive law. In our previous work [31], we constructed the surrogate model by
nding a reduced representation of the stress field via POD,

P(X; Ū, λ) ≈

N∑
n=1

αn(Ū, λ)Bn(X), (23)

here geometrical parameters were not considered. The effective stress was then expressed as

P̄(Ū, λ) ≈

N∑
n=1

αn(Ū, λ)B̄n, (24)

here B̄n := |Ω |
−1 ∫

Ω Bnd X . Regression maps (Ū, λ) ↦→ αn for the coefficients αn(Ū, λ) were learned with
Gaussian Process Regression (GPR) [28,34]. Since each stress field snapshot used for the POD is periodic and
fulfills the linear momentum balance, the basis functions Bn(X) fulfill these conditions as well. This is because
a sum of periodic functions is still periodic, while the linear momentum balance follows from the linearity of the
approximation and the fact that each Bn satisfies the linear momentum balance.

For geometrically parameterized domains, however, stress snapshots cannot be used directly. In order to satisfy
balance of linear momentum in the parameterized domain, stress snapshots need to be mapped and transformed from

the parent to parameterized domain through a corresponding mapping Φµ and its deformation gradient Fµ :=
∂Φµ

∂ X p ,
derived as follows. The weak form of the linear momentum balance on the parameterized domain Ωµ reads∫

Ωµ

∂(δu(Xµ))
∂ Xµ : P(Xµ

; Ū, λ, µ)d Xµ
= 0, (25)

here δu ∈ H 1
0 (Ωµ) is a test function and Xµ denotes the coordinates on the parameterized domain. By introducing

he transformation from Eq. (17) and d Xµ
=
⏐⏐det Fµ

⏐⏐ d X p, the left hand side of Eq. (25) becomes∫
Ωµ

∂(δu(Xµ))
∂ Xµ : P(Xµ

; Ū, λ, µ)d Xµ
=

∫
Ω p

∂(δup(X p))
∂ X p F−1

µ : P(Φµ(X p); Ū, λ, µ)
⏐⏐det Fµ

⏐⏐ d X p

=

∫
Ω p

∂(δup(X p))
∂ X p : P(Φµ(X p); Ū, λ, µ)F−T

µ

⏐⏐det Fµ

⏐⏐ d X p,

(26)

where δup(X p) = δu(Φµ(X p)) is a test function in the parent configuration. From Eq. (26) we can see that if the
stress field P(Φµ(X p); Ū, λ, µ) were directly approximated using POD, then the linear momentum balance Eq. (25)

n the parameterized domain would not necessarily hold due to the effects of Fµ. However, if these effects are
approximated together with the stress as a weighted stress, i.e.,

P(Φµ(X p); Ū, λ, µ)F−T
µ

⏐⏐det Fµ

⏐⏐ ≈

N∑
αn(Ū, λ, µ)Bn(X p), (27)
n=1

9
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then each basis function Bn automatically fulfills the linear momentum balance on any of the parameterized
omains, since the basis functions are computed from linear combinations of snapshots that fulfill the balance
quation on different domains. This can be shown by inserting Eq. (27) into Eq. (26):∫

Ω p

∂(δup(X p))
∂ X p : P(Φµ(X p); Ū, λ, µ)F−T

µ

⏐⏐det Fµ

⏐⏐ d X p (28)

≈

N∑
n=1

αn(Ū, λ, µ)
∫
Ω p

∂(δup(X p))
∂ X p : Bn(X p)d X p. (29)

ince the basis functions are linear combinations of Ns training snapshots, i.e.,

Bn(X p) =

Ns∑
l=1

anl P (l) F−T
µ(l)

⏐⏐det Fµ(l)
⏐⏐ , (30)

here anl are the corresponding coefficients determined by POD and the superscript (l) denotes the lth weighted
tress snapshot, obtained for parameters (Ū(l), λ(l), µ(l)), inserting Eq. (30) into Eq. (29) yields

N∑
n=1

αn(Ū, λ, µ)
∫
Ω p

∂(δup(X p))
∂ X p : Bn(X p)d X p (31)

=

N∑
n=1

αn(Ū, λ, µ)
Ns∑

l=1

anl

∫
Ω p

∂(δup(X p))
∂ X p : P (l) F−T

µ(l)

⏐⏐det Fµ(l)
⏐⏐ d X p  

=0

, (32)

here each of the integrals equals 0, as every training snapshot fulfills Eq. (25). Therefore, any predicted weighted
tress will always fulfill Eq. (25) for any parameterized domains Ωµ. To obtain the stress field from the predicted
eighted stress, one therefore has to multiply it with FT

µ

⏐⏐det Fµ

⏐⏐−1. Furthermore, periodicity follows from the
eriodicity of the stress field and the transformation map.

.3.1. Effective stress
The effective (average) stress on the parameterized domain Ωµ is computed as

P̄(Ū, λ, µ) = |Ωµ
|
−1
∫
Ωµ

P(Xµ
; Ū, λ, µ)d Xµ, (33)

here |Ωµ
| denotes the volume of the RVE. Note that |Ωµ

| = |Ω p
| for all µ due to the volume-preserving

transformation map. Pulling the integral back into the parent domain gives

P̄(Ū, λ, µ) = |Ω p
|
−1
∫
Ω p

P(Φµ(X p); Ū, λ, µ)
⏐⏐det Fµ

⏐⏐ d X p, (34)

nd using the approximation for P(Φµ(X p); Ū, λ, µ) from Eq. (27) then yields

P̄(Ū, λ, µ) ≈ |Ω p
|
−1
∫
Ω p

(
N∑

n=1

αn(Ū, λ, µ)Bn(X p)

)
FT

µ

1
| det Fµ|

| det Fµ|d X p (35)

= |Ω p
|
−1
∫
Ω p

(
N∑

n=1

αn(Ū, λ, µ)Bn(X p)

)
FT

µd X p. (36)

Since αn does not depend on X p, it can be taken out of the integral, yielding

P̄(Ū, λ, µ) = |Ω p
|
−1

N∑
n=1

αn(Ū, λ, µ)
∫
Ω p

Bn(X p)FT
µd X p. (37)

In order to have a rapid online phase, the integrals must be precomputed in the offline stage. Due to the specific
form of the basis functions Bn , it can be shown that the integral in Eq. (37) is invariant with respect to FT

µ , i.e.,∫
Bn(X p)FT

µd X p
=

∫
Bn(X p)d X p, (38)
Ω p Ω p

10
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which can be precomputed since Bn is known; the proof of the identity in Eq. (38) is provided in Appendix A.
With

B̄n := |Ω p
|
−1
∫
Ω p

Bn(X p)d X p, (39)

the expression for the effective stress in Eq. (37) becomes

P̄(Ū, λ, µ) =

N∑
n=1

αn(Ū, λ, µ)B̄n, (40)

hich remarkably has exactly the same form as Eq. (24), with the additional geometrical parameter dependence
n the coefficients αn . Hence, the prediction of the effective stresses is completely independent of the auxiliary
roblem, which only needs to be computed to recover the stress field.

.3.2. Effective stiffness and sensitivities
The effective constitutive stiffness and sensitivities with respect to material and geometrical parameters are given

s

Ā =
∂P̄
∂Ū

=

N∑
n=1

B̄n ⊗
∂αn

∂Ū
, (41)

∂P̄
∂λ

=

N∑
n=1

B̄n ⊗
∂αn

∂λ
, (42)

∂P̄
∂µ

=

N∑
n=1

B̄n ⊗
∂αn

∂µ
. (43)

Given coefficients αn and their derivatives, the effective stress, stiffness and sensitivities can therefore be
irectly obtained. These coefficients can be approximated with different regression models, such as radial basis
unctions [53], GPR [28,54] or neural networks [29]. A comparison in this context was carried out in [55], revealing
hat GPRs can be as accurate as NNs, while being easier to train. Moreover, a GP model also returns an uncertainty

easure for every prediction, which can be utilized to construct active learning schemes, see, e.g., [28,54,56]. Due
o these advantages, in this work, we learn regression models for αn(Ū, λ, µ) with GPRs. Note that in this work,

we do not use the uncertainty measure to adaptively enrich the training set, as in [28,54,56]; this will be explored
in future work. A broad overview and theory on GPRs can be found in [34], and is omitted here for brevity. For
all GPR models, the Python library GPy [57] with automatic relevance determination squared exponential kernels
has been used. The optimal hyperparameters of the kernels are determined by a maximum likelihood estimation,
as presented in [28,34], with the L-BFGS-B algorithm. In the numerical tests, we did not encounter any problems
during hyperparameter tuning and the convergence of the L-BFGS-B algorithm was smooth.

3.4. Offline–online decomposition

For convenience, the full offline–online decomposition is summarized in Algorithm 1.

4. Example problems

In this section, the proposed method, in the following referred to as PODGPR, is first applied onto two
geometrically parameterized microstructures to showcase the generality of the approach and its accuracy. Then, a
two-scale Cook’s membrane problem is shown to illustrate the speed-up and its potential applications. All examples
are defined in 2D under plane strain conditions, although the proposed methodology can easily be extended to 3D
microstructures.

For convenience, all quantities in all examples are normalized, and dimensionless quantities are considered. At
2
the same time, all RVEs are assumed to be of size [0, 1] .

11
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Algorithm 1 Offline–online decomposition of the proposed PODGPR framework with microstructures
arameterized with external loading Ū, microstructural material parameters λ and geometrical features µ.

Offline Stage:
1: Define a parent domain Ω p and its finite element discretization.
2: Generate parameter samples {Ūi , λi , µi

}
Ns
i=1 from a random distribution.

3: For each different set of geometrical parameters µi , solve the auxiliary problem in Eq. (18) to obtain the
transformation map Φµi .

4: Use the transformation map Φµi to generate simulation meshes for each parameter sample µi and then run full
simulations to obtain stress snapshots P i (Φµi (X p); Ūi , λi , µi ).

5: Compute POD of the weighted stress snapshots P i (Φµi (X p); Ūi , λi , µi )F−T
µi | det Fµi | on the parent domain,

cf. Eq. (27).
6: Project weighted stress snapshots onto POD basis and learn GPRs for the POD coefficients.
7: Compute B̄n using Eq. (39).

Online Stage:
1: Given a new parameter set (Ū∗, λ∗, µ∗), evaluate αn using GPRs.
2: Compute effective stress using Eq. (40) and effective sensitivities with Eqs. (41)–(43)

The nonlinear physical simulations are solved within the Finite Element framework MOOSE [58] and the linear
uxiliary problems are solved with an in-house code1 written in Python. As mentioned in Remark 3.2, to obtain
hysically consistent transformations without the need for interpolation, we use the auxiliary problem to generate
imulation meshes. To quantify the quality of the approximation, the following two error measures are introduced:

1. Relative error of stress field

EP =
∥P truth

− P surrogate
∥L2(Ωµ)

∥P truth
∥L2(Ωµ)

, (44)

2. Relative error of effective stress

EP̄ =
∥P̄truth

− P̄surrogate
∥F

∥P̄truth∥F
, (45)

where (•)truth and (•)surrogate indicate the full and approximate solution, and ∥(•)∥L2(Ωµ) and ∥(•)∥F denote the
L2(Ωµ) and the Frobenius norm, with Ωµ the parameterized domain. The average errors for given testing datasets
re defined as:

ĒP =
1

Ntest

Ntest∑
n=1

En
P , ĒP̄ =

1
Ntest

Ntest∑
n=1

En
P̄, (46)

here Ntest is the number of testing snapshots and En
P and En

P̄ correspond to the relative errors of the nth snapshot.
For comparison, we also trained several deep feed-forward neural networks for the effective stress using the

ame data for each example, similar to [31]. All considered neural networks have as many inputs as the number
f parameters, 4 outputs for each stress component and 2 hidden layers each with Nn neurons. We trained four
rchitectures with Nn ∈ {50, 100, 200, 300}. These four architectures will be referred to as NN1, NN2, NN3 and
N4. ELU activation functions are applied on each layer apart from the last layer. For the optimization, the mean

quared error loss function is chosen and optimized with the Adam optimizer [59] with a learning rate of 1 × 10−4

and a batch size of 32 for 10000 epochs. The training is performed with the Python package PyTorch [60].

4.1. Composite microstructure with an elliptical fiber

In this example, a composite structure, consisting of a soft matrix and an elliptical stiff fiber around the center
of the domain Xc = [0.5, 0.5]T , is considered. Three geometrical parameters that parameterize the fiber shape,

1 The implementation can be found on https://github.com/theronguo/auxiliary-problem.
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Fig. 3. Parent and parameterized domain. (a) The chosen parent domain with a circular interface with fixed radius a = b = r = 0.225
ith (b) its corresponding mesh, consisting of a total of 20769 nodes and 10665 6-node triangular elements. (c) The parameterized domain,

haracterized by semi-major axis a, semi-minor axis b and angle θ .

he semi-major axis a, semi-minor axis b and a rotation angle θ , are considered, see Fig. 3(c). Together with the
hree loading directions Ūxx , Ūyy and Ūxy , this problem has 6 parameters. For the matrix material a Neo–Hookean

aterial model with C1 = 1 and D1 = 1 is chosen, while for the fiber material a Neo-Hookean material model
ith C1 = 100 and D1 = 100 is assumed, corresponding to a stiffness that is 100 times higher than the matrix
aterial. Both materials have Poisson’s ratio 0.25. The considered parameter ranges are given in Table 1. Lower

nd upper bounds for Ū are chosen such that the solution of the microstructural problem converges for all parameter
onfigurations. For some geometrical parameters, a few elements of the parent mesh might become highly distorted
fter applying the geometrical transformation. Together with the high contrast of material stiffness of both materials,
arger magnitudes than 0.15 of the components Ū − I lead to convergence issues. If larger magnitudes have to be
onsidered, a different parent domain could be employed or a smaller parameter space of the geometrical parameters
ould be chosen.

.1.1. Setup of the auxiliary problem
For the parent domain, a domain with a circular inclusion with radius r = 0.225 is chosen, see Fig. 3(a). The

orresponding mesh, consisting of 20769 nodes and 10665 6-node triangular elements, is shown in Fig. 3(b). The
ransformation of the circular interface into the elliptical interface can be given as:

Xµ(Xp) =

[
cos θ − sin θ

sin θ cos θ

] [
a/r 0

0 b/r

](
r̃ (Xp

− Xc) cos(θ̃ (Xp
− Xc) − θ )

r̃ (Xp
− Xc) sin(θ̃ (Xp

− Xc) − θ )

)
+ Xc, (47)

here

r̃ (Xp) =

√
XpT Xp (48)

θ̃ (Xp) =arctan2(x p, y p), (49)

ith Xp
= [x p, y p]T a column vector of each of the nodal positions located at the interface. The arctan2-function

s an extension of the arctan-function and is defined as,

(x, y) ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(y/x) x > 0,

arctan(y/x) + π x < 0, y ≥ 0,

arctan(y/x) − π x < 0, y < 0,

π/2 x = 0, y > 0,

−π/2 x = 0, y < 0,

undefined x = 0, y = 0.

(50)

he Poisson’s ratio ξ for the auxiliary problem is first chosen to be 0.3. In Section 4.1.4 below, its influence on the
ccuracy of obtained results is discussed.
13
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Table 1
Example 1–6 parameters with corresponding ranges. The parameters a, b and θ are the geometrical parameters
describing the interface while Ūxx , Ūyy and Ūxy are external loading parameters.

a b θ Ūxx Ūyy Ūxy

[0.1, 0.35] [0.1, 0.35] [−π/2, π/2] [0.85, 1.15] [0.85, 1.15] [−0.15, 0.15]

Fig. 4. Eigenvalues of the correlation matrix for (a) weighted stress and (b) transformation displacement. For the weighted stress the
eigenvalues decay exponentially, while for the transformation displacement only the first three modes are nonzero. This means that the
transformation displacement can be represented with just three basis functions.

4.1.2. Data generation
In total 1000 training snapshots are generated, of which 26

= 64 snapshots are at the corners of the 6-dimensional
arameter space and the rest are sampled from a Sobol sequence [61]. For testing, another 500 snapshots are
enerated from a random uniform distribution.

.1.3. Results
OD of weighted stress and transformation displacement. The eigenvalues of the correlation matrix for the
eighted stress are given in Fig. 4(a). It can be observed that the eigenvalues decay exponentially, indicating a
ood reducibility. To show that the auxiliary problem in Eq. (19) can be reduced drastically, the eigenvalues of the
orrelation matrix for the transformation displacement are also shown in Fig. 4(b). All but three eigenvalues are
ssentially zero, showing that the auxiliary problem can be solved with three basis functions.

pproximation errors. The average approximation error of the effective stress on the 500 testing snapshots of
ODGPR for different numbers of basis functions N and training snapshots Ns is shown in Fig. 5. All Ns training
napshots are used for both the POD and GPR. In Fig. 5(a), the error decays rapidly for the first few basis functions.
or N = 20 an error of roughly 0.5% is reached. However, taking into account more basis functions barely improves

he performance since the coefficients get increasingly more oscillatory with increasing number and hence more
ifficult to approximate with a GPR model, see [31]. From Fig. 5(b), we see that a higher number of snapshots is
rucial for the accuracy of PODGPR. Data shown corresponds to N = 20 basis functions. For small datasets the
rror increases exponentially, indicating a poor approximation of the first 20 POD coefficients.

In Table 2, the approximation quality of PODGPR with N = 20 basis functions is compared with the four
eural networks. The best approximation error (defined as the error of projecting the truth solution onto the reduced
asis) with N = 20 basis functions is also given. PODGPR approximates the effective stress better than all the NN
odels at least by a factor of 2. Moreover, it is nearly able to reach the error of the best approximation in both error
easures, indicating that with Ns = 1000 training snapshots the first 20 POD coefficients can be well captured. The

rror in the stress field is less than 0.1%, while for the effective stress the error is 0.5%. Furthermore, by comparing
he results with Fig. 5(b), it can be seen that the best results obtained by the neural networks are reached by
ODGPR with only Ns = 600 snapshots, showing that PODGPR is more data efficient than the neural networks in
his case.

14
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Fig. 5. (a) Average error of the effective stress over number of basis functions with Ns = 1000 training snapshots. The error curve decays
apidly for the first few basis functions and then flattens out. (b) Average error of the effective stress over number of training snapshots
sed for N = 20 basis functions. The error increases drastically when fewer training snapshots are used.

Fig. 6. Norm of transformation displacement with a = 0.104, b = 0.291, θ = −8.44◦ for (a) ξ = 0.0 and (b) ξ = 0.49. While the former
eads to localized deformations, the latter affects the entire domain. (c) The mean error plotted over the Poisson’s ratio ξ . The errors decrease
ith decreasing ξ , but remain on the same order of magnitude O(10−3).

Table 2
Approximation errors for different methods. The trained surrogate models are tested on 500 testing snapshots.
PODGPR outperforms all NN models by a factor 2.

Best approximation PODGPR NN1 NN2 NN3 NN4

ĒP 8.17 × 10−4 9.49 × 10−4 n.a. n.a. n.a. n.a.
ĒP̄ 2.74 × 10−3 5.06 × 10−3 2.66 × 10−2 1.53 × 10−2 1.02 × 10−2 9.8 × 10−3

4.1.4. Influence of Poisson’s ratio on the auxiliary problem
In this section, the influence of the Poisson’s ratio on the approximation of the effective stress is investigated,

onsidering ξ ∈ {−0.99, −0.8, −0.5, 0.0, 0.15, 0.3, 0.49}. Example transformation maps for ξ ∈ {0.0, 0.49} are
hown in Figs. 6(a) and 6(b) and the obtained errors are plotted over the Poisson’s ratio in Fig. 6(d). For this
xample, the lower the Poisson’s ratio the better the approximation. Nevertheless, all error values are close to
ach other (ranging from 0.46% to 0.58%), although the transformation displacement field differs significantly, see
igs. 6(a) and 6(b). From this empirical result, it seems that the choice of the Poisson’s ratio is insignificant and,
ince there is no practical way of finding the best value, ξ = 0.3 is adopted hereafter.

.2. Composite microstructure with a B-spline controlled inclusion shape

In the second example, an inclusion with a shape that is described by a B-spline with eight control points is
onsidered, see Fig. 7(a). The x-coordinate of the left and right control point and the y-coordinate of the top and
15



T. Guo, F.A.B. Silva, O. Rokoš et al. Computer Methods in Applied Mechanics and Engineering 401 (2022) 115636

i

t

b
i
a
i
c

4

Table 3
Example 2–7 parameters with corresponding ranges. The parameters a, b, c and d are geometrical parameters
describing the interface, see Fig. 7 for the explanation, while Ūxx , Ūyy and Ūxy are external loading parameters.

a b c d Ūxx Ūyy Ūxy

[0.1, 0.4] [0.1, 0.4] [0.6, 0.9] [0.6, 0.9] [0.85, 1.15] [0.85, 1.15] [−0.15, 0.15]

Fig. 7. Parameterized domain. (a) The interface is spanned by eight control points. Out of those, four control points can move in one
direction, which are controlled by the geometrical parameters a, b, c and d . (b) The parent geometry with a = b = 0.25 and c = d = 0.75
s chosen and the mesh consists of 11296 nodes and 5833 6-node triangular elements.

Fig. 8. Example geometries. The control points are shown in orange color and the resulting interface in blue color. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

ottom control point are parameterized, resulting in four geometrical parameters a, b, c and d. The curve is then
nterpolated with cubic polynomials using the Python library NURBS-Python [62]. The same material parameters
re chosen as in the first example, with parameter ranges given in Table 3. A few example geometries are shown
n Fig. 8 to show the variety of shapes covered by this parameterization. The lower and upper bounds for Ū are
hosen in the same way as in Section 4.1.

.2.1. Setup of the auxiliary problem
For the parent domain, the midpoint of the parameter domain is selected, i.e., a = b = 0.25 and c = d = 0.75.

The corresponding geometry and mesh, consisting of 11296 nodes and 5833 6-node triangular elements, are shown
in Fig. 7.
16
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Fig. 9. Eigenvalues of the correlation matrix for (a) weighted stress and (b) transformation displacement. Same as for the last example, the
eigenvalues of weighted stress decay exponentially. For the transformation displacement only the first 4 modes are nonzero, meaning it can
be represented with 4 basis functions.

Table 4
Mean errors for different methods. The trained surrogate models are tested on 500 testing snapshots. PODGPR
outperforms all NN models by a factor 2.

Best approximation PODGPR NN1 NN2 NN3 NN4

ĒP 1.79 × 10−4 1.85 × 10−4 n.a. n.a. n.a. n.a.
ĒP̄ 1.09 × 10−3 1.31 × 10−3 3.3 × 10−3 2.5 × 10−3 2.2 × 10−3 2.3 × 10−3

4.2.2. Data generation
In total 1000 training snapshots are again generated from a Sobol sequence [61], while another 500 snapshots

re generated from a random uniform distribution for testing.

.2.3. Results
OD of weighted stress and transformation displacement. In Fig. 9, the eigenvalues of the correlation matrix for
oth weighted stress and transformation displacement are depicted. An exponential decay can be observed for the
eighted stress, while all but four eigenvalues are essentially zero for the transformation displacement.

pproximation errors. The average approximation errors on the 500 testing snapshots of the best approximation
projection of truth solution onto the reduced basis) with N = 50 basis functions, PODGPR with N = 50 basis
unctions and the four neural networks are reported in Table 4. From the results it can be observed that PODGPR
early reaches the best approximation, showing that the first 50 coefficients are well approximated by the GPR
odels. Furthermore, it outperforms all neural network architectures by a factor of 2, reaching an average error of

.131% in effective stress.

.3. Two-scale Cook’s membrane problem

While the last two examples dealt with the construction of the surrogate model for the microscale, in this example
he surrogate model is employed in a full two-scale Cook’s membrane problem. Here, the microstructure from
ection 4.1 with an elliptical inclusion is considered. The geometry of the Cook’s membrane and its mesh are
hown in Fig. 10. The mesh consists of 200 quadrilateral elements with 4 quadrature points, resulting in 800
icrostructure evaluations required for a single Newton iteration. The microstructural parameters a and b are

ssumed to be constant with a = 0.35 and b = 0.1, corresponding to an ellipse, while the angle θ is a function
n the x-coordinate with θ (x) = (π sin x)/2, in order to test the performance of the surrogate model under rapidly
arying fiber directions (see Fig. 10(c) for an illustration of the function). A similar test problem was considered
n [63]. The left side of the membrane is fixed, while a vertical traction of 0.05 is applied on the right edge, which
eads to overall deformations within the training range of the surrogate model (|Ūxx − 1|, |Ūyy − 1|, |Ūxy | < 0.15).

A full FE2 simulation and a FE simulation using PODGPR are run and the obtained displacement fields ū are
ompared in Fig. 11. The PODGPR surrogate model constructed with N = 20 basis functions from N = 1000
s

17
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Fig. 10. (a) The geometry of the Cook’s membrane and (b) corresponding simulation mesh used. The mesh consists of 231 nodes and 200
4-node quadrilateral elements. (c) The fiber direction depends on the x-coordinate as θ (x) =

π

2
sin x .

Fig. 11. The norm of the displacement obtained for (a) FE2 and (b) FE with PODGPR. The displacement fields are nearly identical. (c) The
magnitude of the absolute error between both solutions. The error is around two orders of magnitude lower than the displacement values
and increases from left to right. Vertical stripes are visible, corresponding to the rapidly varying fiber orientations, showing that some angles
are better or worse approximated.

training snapshots is used. The obtained displacement fields shown in Figs. 11(a) and 11(b) are almost identical.
To further quantify the error, the magnitude of the difference between both displacement solutions is shown in
Fig. 11(d). Here we observe that the highest absolute error is at the top right corner and the error increases from
left to right. Comparing the error and the actual value at the top right corner, the relative error corresponds to
0.058/3.56 = 1.6%. Furthermore, vertical stripes with similar errors can be seen, which correspond to the quickly
varying fiber directions in the x-coordinate, meaning that some angles are better or worse approximated. The quality
of approximation for different angles depends on the sampling of the training snapshots. Moreover, the compliance
fc, defined as fc := fT

extū where fext corresponds to the externally applied vertical traction, is computed for both
methods, yielding f FE2

c = 2.227 and f PODGPR
c = 2.202, resulting in a relative error of 1.1%. This is an important

quantity, often used in optimization problems.
The execution times2 for both cases are reported in Table 5. For the construction of PODGPR, 1000 snapshots are

generated, involving each time an auxiliary problem and a full simulation to be solved, taking roughly 4 h. With
the data available, the construction of PODGPR with 20 basis functions takes around 10 min. After this offline
computation, the online speed up is on the order of 1000 as compared to the full two-scale simulation.

2 All operations were executed using four subprocesses on an Intel Core i7-8750H.
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Table 5
Run times. The offline stage for constructing PODGPR takes slightly over 4 h. Then,
the Cook’s membrane problem can be solved within 0.5 min, while at the same time
the full FE2 simulation takes around 1080 min for a single forward solution.

FE2 FE-PODGPR

Offline n.a Auxiliary Problem: ≈ 10 min
Snapshot Generation: ≈ 240 min
PODGPR: ≈ 10 min

Online ≈ 1080 min ≈ 0.5 min

5. Conclusions

In order to successfully find optimal microstructures for complex engineering systems in a reasonable amount
f time, it is necessary to find an accurate and fast-to-evaluate approximation of the microscopic simulation, which
an handle a large design space of shapes and geometrical variations. In this work, we proposed a PDE-based
ransformation method for the treatment of geometrical parameters. By combining the transformation with the proper
rthogonal decomposition and Gaussian process regression, we have developed a non-intrusive effective constitutive
odel that makes predictions which automatically fulfill the underlying microscopic governing equations for a wide

ariety of geometries. For the two considered microstructures, each described by several geometrical parameters, the
urrogate model captures the local stress fields accurately with an average error less than 1%. The effective model
s embedded in a two-scale problem, where a high variation in parameters throughout the domain is considered,
nd accelerates the simulation by a factor of 1000 as compared to the full FE2 simulation, while maintaining high

accuracy. Sensitivities with respect to microstructural parameters are available, which can be utilized in two-scale
shape optimization problems or solution of inverse problems, and the methodology can also be directly applied to
3D problems.

Although this method is powerful, several limitations exist. For geometrical parameters leading to very severe
geometrical variations, the proposed transformation leads to highly irregular and distorted meshes. A possible
remedy to resolve this issue is to correct the distorted elements by mesh refinement, or to use multiple parent
geometries with local surrogate models. In the online stage, the closest cluster could be chosen to evaluate the
surrogate model. Another challenge is the requirement of data. Even though the methodology proved to be more
data efficient than feed-forward neural networks in our examples, still a rather large amount of training data is
needed. Possible solutions are multi-fidelity methods or adaptive sampling schemes.
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Appendix A. Proof of Eq. (38)

With Bn the nth basis function of the weighted stress, cf. Eq. (27), we want to prove that∫
Bn(X p)FT

µd X p !
=

∫
Bn(X p)d X p (A.1)
Ω p Ω p
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T

for all µ and all n. First of all, Fµ can be written as

Fµ = I +
∂dµ

∂ X p (A.2)

with dµ the transformation displacement, so the left-hand side of Eq. (A.1) splits into∫
Ω p

Bn(X p)FT
µd X p

=

∫
Ω p

Bn(X p)d X p
+

∫
Ω p

Bn(X p)
(

∂dµ

∂ X p

)T

d X p. (A.3)

o prove Eq. (A.1), we thus need to show that∫
Ω p

Bn(X p)
(

∂dµ

∂ X p

)T

d X p !
= 0. (A.4)

Without loss of generality, assume only a single training snapshot, obtained for parameters (Ū∗, λ∗, µ∗) on a domain
Ωµ∗

, and a transformation map Φµ∗ : Ω p
→ Ωµ∗

, Xµ∗

= Φµ∗ (X p). Thus, there is only a single basis function,

B1(X p) = P(Φµ∗ (X p); Ū∗, λ∗, µ∗)F−T
µ∗

⏐⏐det Fµ∗

⏐⏐ , (A.5)

and Eq. (A.4) becomes∫
Ω p

P(Φµ∗ (X p); Ū∗, λ∗, µ∗)F−T
µ∗

⏐⏐det Fµ∗

⏐⏐ ( ∂dµ

∂ X p

)T

d X p. (A.6)

We would now like to push the integral in Eq. (A.6) forward onto the domain Ωµ∗

. By introducing the inverse
mapping,

Φ−1
µ∗ : Ωµ∗

→ Ω p, X p
= Φ−1

µ∗ (Xµ∗

), d Xµ∗

=
⏐⏐det Fµ∗

⏐⏐ d X p, (A.7)

Fµ∗ is transformed with

Fµ∗ =
∂Φµ∗ (X p)

∂ X p =
∂Φµ∗ (Φ−1

µ∗ (Xµ∗

))

∂ Xµ∗

(
∂ X p

∂ Xµ∗

)−1

=

(
∂ X p

∂ Xµ∗

)−1

, (A.8)

from which it follows that

F−T
µ∗ =

(
∂ X p

∂ Xµ∗

)T

; (A.9)

furthermore, the partial derivative
∂dµ(X p)

∂ X p can be expressed as

∂dµ(X p)
∂ X p =

∂dµ(Φ−1
µ∗ (Xµ∗

))

∂ Xµ∗

(
∂ X p

∂ Xµ∗

)−1

, (A.10)

or (
∂dµ

∂ X p

)T

=

(
∂ X p

∂ Xµ∗

)−T
(

∂dµ(Φ−1
µ∗ (Xµ∗

))

∂ Xµ∗

)T

(A.11)

by transposing both sides of Eq. (A.10). With Eqs. (A.7), (A.11), (A.9) and (A.6) becomes∫
Ωµ∗

P(Xµ∗

; Ū∗, λ∗, µ∗)
(

∂ X p

∂ Xµ∗

)T (
∂ X p

∂ Xµ∗

)−T
(

∂dµ(Φ−1
µ∗ (Xµ∗

))

∂ Xµ∗

)T

d Xµ∗

(A.12)

=

∫
Ωµ∗

P(Xµ∗

; Ū∗, λ∗, µ∗)

(
∂dµ(Φ−1

µ∗ (Xµ∗

))

∂ Xµ∗

)T

d Xµ∗

. (A.13)

Utilizing the divergence theorem, Eq. (A.13) can be rewritten as∫
t ⊗ dµ(Φ−1

µ∗ (Xµ∗

)) ds −

∫
dµ(Φ−1

µ∗ (Xµ∗

)) ⊗ Div P(Xµ∗

; Ū∗, λ∗, µ∗)d Xµ∗

, (A.14)

∂Ωµ∗

Ωµ∗
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where t := P(Xµ∗

; Ū∗, λ∗, µ∗)n is the traction vector with n the outer unit normal along the boundary ∂Ωµ∗

and ds
is an infinitesimal boundary element. Using the fact that the training snapshot fulfills the linear momentum balance
Div P(Xµ∗

; Ū∗, λ∗, µ∗) = 0 on the domain Ωµ∗

, the latter part of Eq. (A.14) becomes 0, and therefore,∫
Ωµ∗

P(Xµ∗

; Ū∗, λ∗, µ∗)

(
∂dµ(Φ−1

µ∗ (Xµ∗

))

∂ Xµ∗

)T

d Xµ∗

=

∫
∂Ωµ∗

t ⊗ dµ(Φ−1
µ∗ (Xµ∗

)) ds. (A.15)

Due to the definition of the auxiliary problem in Eq. (18), dµ(Φ−1
µ∗ (Xµ∗

)) is 0 on the boundary ∂Ωµ∗

and therefore
the boundary integral in Eq. (A.15) always results in the zero tensor, meaning that the integral in Eq. (A.6) vanishes
for all µ.

Since each basis function Bn is a linear combination of converged weighted stress fields, from the linearity, the
integral on the left hand side of Eq. (A.4) vanishes as well, which is what we wanted to prove and Eq. (A.4) holds.
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