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Abstract
The structural properties of mechanical metamaterials are typically studied with two-scale methods based on
computational homogenization. Because such materials have a complex microstructure, enriched schemes
such as second-order computational homogenization are required to fully capture their non-linear behavior,
which arises from non-local interactions due to the buckling or patterning of the microstructure. In the
two-scale formulation, the effective behavior of the microstructure is captured with a representative volume
element (RVE), and a homogenized effective continuum is considered on the macroscale.
Although an effective continuum formulation is introduced, solving such two-scale models concurrently
is still computationally demanding due to the many repeated solutions for each RVE at the microscale
level. In this work, we propose a reduced-order model for the microscopic problem arising in second-
order computational homogenization, using proper orthogonal decomposition and a novel hyperreduction
method that is specifically tailored for this problem and inspired by the empirical cubature method. Two
numerical examples are considered, in which the performance of the reduced-order model is carefully
assessed by comparing its solutions with direct numerical simulations (entirely resolving the underlying
microstructure) and the full second-order computational homogenization model. The reduced-order model is
able to approximate the result of the full computational homogenization well, provided that the training data
is representative for the problem at hand. Any remaining errors, when compared with the direct numerical
simulation, can be attributed to the inherent approximation errors in the computational homogenization
scheme. Regarding run times for one thread, speed-ups on the order of 100 are achieved with the reduced-
order model as compared to direct numerical simulations.
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1 INTRODUCTION

With the recent advances in additive manufacturing, there has been a growing interest in designing and modelling metamaterials
which exhibit emerging exotic properties that can be fine-tuned for specific applications. By a careful microstructural design,
properties such as negative Poisson’s ratios [3], negative compressibility [10], or negative refractive index [36] can be achieved.
They can also act as filters that absorb certain bandwidths of frequencies [26], or act as acoustic cloaks [44]. Additionally, such
materials have been applied in impact mitigation [42] or biomedical applications [34, 13]. A broad overview on their engineering
applications can be found in [41].

Studying properties of mechanical metamaterials through simulations is often challenging since complex microstructural
geometries need to be resolved, requiring very fine meshes. In particular, in multi-query contexts such as the design of materials,
numerous simulations are required and the computational costs become infeasible. To address this issue, multi-scale methods
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based on computational homogenization (CH) [9, 12] are usually employed. These methods involve the separate modeling,
discretization, and coupling of a microstructure defined on a representative volume element (RVE) and an effective homogenized
macrostructure. The effective continuum does not resolve the complex microstructure on the macroscale but captures the
underlying microscale physics. At every integration point of the macrostructure, the macroscopic kinematic quantities are used
to specify the microscopic problem on the RVE which, after solution, returns effective quantities (e.g., stress and stiffness) back
to the macroscopic solver. If scale separation can be assumed, i.e., the microstructural features are much smaller than the size
of the macrostructure, the effective behavior of the microstructure can be adequately predicted using first-order CH [25, 30].
However, for metamaterials the microstructure can be of comparable size with the macrostructure and non-local effects (due
to, e.g., buckling; see, e.g., [33, 39]) may emerge at the microscale, both violating the scale separation assumptions of the
first-order scheme.

Enriched CH methods, such as second-order CH [22] or micromorphic CH [11], extend the first-order formulation by
introducing additional field variables and equations. For micromorphic CH, additional fields that describe the governing behavior
of the underlying microstructure are introduced at the macroscale and communicated between both scales. To determine the
evolution of these quantities, additional equations need to be included and a coupled system is solved at the macroscale. As an
example, the average strain of the inclusions inside a composite RVE was introduced as an additional quantity in Biswas and
Poh [5]. In Jänicke et al. [19], micro-rotations were considered as additional field variables for cellular materials. For buckling
elastomeric metamaterials, prior knowledge on the buckling modes was embedded into the micromorphic framework presented
in Rokoš et al. [39]. For second-order CH, a strain gradient formulation is considered at the macroscale, i.e., the gradient of
the strain (or deformation gradient) is required, giving rise to a length-scale associated with the size of the underlying RVE,
thus making it possible to capture size and non-local effects. To ensure a proper scale transition of the kinematical quantities,
additional constraints were derived in Kouznetsova et al. [22]. However, this model leads to artificial stress concentrations at
the corners of the RVE for which subsequent formulations attempted to correct [29, 46, 47]. In Luscher et al. [29], additional
constraints were derived from orthogonality conditions on the different components of the displacement field on the RVE, and in
Wu et al. [46] and Yvonnet et al. [47] body forces were included to account for additional effects.

In spite of the simplified formulation in terms of an effective non-local continuum, the multi-scale problem based on CH is
still computationally expensive, as the microscopic problem needs to be solved repeatedly. To overcome this problem, a reduced-
order model (ROM) for the microscopic problem that is accurate and fast to evaluate is necessary. For first-order CH, numerous
methods have been proposed in the literature. These methods can be split into two main classes: (1) data-driven methods that
learn a constitutive model (i.e., stress-strain relation) from large datasets obtained by solving the microscopic problem for many
different inputs, and (2) projection-based methods that accelerate the microscopic problem by projecting it onto a reduced space.
Notable methods for the first class include, for example, the data-driven framework introduced in Kirchdoerfer et al. [21] or
constitutive artificial neural networks in Linka et al. [28], which were applied to learn effective elastic material models and later
extended for other material models (see, e.g., [1, 8, 20]). Other authors generated large datasets and utilized recurrent neural
networks to learn history-dependent plasticity material models in, e.g., [32, 45]. Even though highly accurate and efficient ROMs
can be obtained with these methods, there are three concerns: (1) rather large datasets are usually needed that ideally cover
all possible inputs, (2) dealing with history-dependent behaviors such as plasticity is often challenging, and (3) extrapolation
is unreliable. For the second class, methods based on proper orthogonal decomposition (POD) and hyperreduction have been
quite successful. Using POD, the solution space of the microscopic problem is reduced to a fraction of the original problem;
with hyperreduction, and more specifically, the empirical cubature method (ECM) proposed by Hernández et al. [16] and later
refined in [17], the assembly of the global stiffness matrix and internal force vector can be performed much more efficiently.
Since the microscopic problem is still being solved (in a reduced form), smaller datasets are typically sufficient for good results
and dealing with history-dependent behavior is not an issue. In Caicedo et al. [7] and Raschi et al. [37], two-scale simulations
involving highly non-linear RVEs were successfully accelerated. In our previous work [14], we constructed an efficient ROM by
combining POD and ECM with geometrical transformations that can be applied for two-scale shape optimization problems
involving elasto-plastic RVEs under large deformations.

While there is a wide range of works on accelerating the first-order CH model, to the best of our knowledge there have been
no attempts towards the reduced-order modeling of any enriched formulations. Inspired by the literature on first-order CH, in
this contribution we propose a ROM for second-order CH, utilizing POD and a novel hyperreduction method that is inspired
by ECM [16]. The main reasons for opting for a projection-based ROM over a data-driven one are two-fold: (1) estimation
of parameter bounds for strain gradients is generally difficult a priori, and (2) the number of input parameters is large, in 2D
corresponding to four components of the deformation gradient and another six of the gradient of the deformation gradient (nine
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and eighteen in 3D). This parameter space does not yet account for any other additional design variables, which would further
increase the number of parameters. The main innovative contributions of this manuscript are:

• design of a novel hyperreduction algorithm tailored to second-order CH,
• development of a hyperreduced POD model for a family of geometrically parameterized microstructures,
• derivation of effective quantities arising in reduced second-order CH, and
• an empirical analysis of the hyperreduced model for geometrically parameterized two-scale simulations under large

deformations and multi-scale buckling.

After reviewing the theory on second-order CH and specifying the employed formulation used in Section 2, the proposed ROM,
including the novel hyperreduction algorithm, is presented in Section 3. To validate the ROM, numerical examples are discussed
in Section 4 and obtained results are compared with reference solutions in terms of accuracy and efficiency. A summary on the
findings with final remarks is provided in Section 5.

Throughout the paper, the following notation conventions are used:

• scalars a,
• vectors a = aiei,
• position vector x = xiei,
• second-order tensors A = Aijeiej,
• third-order tensors A = Aijkeiejek,
• fourth-order tensors A = Aijkleiejekel,
• matrices A and column matrices a,
• a · b = aibi,
• a⊗ b = aibjeiej,
• A · b = Aijbjei,
• A · B = AikBkjeiej,
• A : B = AijBji,
• A⊗ b = Aijbkeiejek,
• b⊗ A = biAjkeiejek,
• A⊗ B = AijBkleiejekel,
• a ·A = aiAijkeiej,

• A ... B = AijkBkji,

• A : B = AijklBlkeiej,
• A : B = AlkBklijeiej,
• transpose AT , AT

ij = Aji, AT , AT
ijk = Akji,

• tr A = Aii,
• gradient operator with respect to x

∇xa =
∂aj

∂xi
eiej, ∇xA =

∂Ajk

∂xi
eiejek,

• gradient operator with respect to second-order tensor B
∇BA =

∂Akl

∂Bij
eiejekel, ∇BA =

∂Aklm

∂Bij
eiejekelem,

• gradient operator with respect to third-order tensor B
∇BA =

∂Alm

∂Bijk
eiejekelem, ∇BA =

∂Almn

∂Bijk
eiejekelemen,

• divergence operator with respect to x
∇x · A =

∂Aij

∂xi
ej, ∇x ·A =

∂Aijk

∂xi
ejek,

• linearization of functional Π around state a in direction ∆a
DΠ
∣∣
a · (∆a) =

d
dτ

Π(a + τ∆a)
∣∣∣∣
τ=0

,

where the Einstein summation convention is assumed on repeated indices i, j, k, l, m, n and ei, i = 1, . . . , d denote the basis vectors
of a d-dimensional Cartesian coordinate frame. Overlines are used to distinguish macroscopic from microscopic quantities.

2 SECOND-ORDER COMPUTATIONAL HOMOGENIZATION

The second-order computational homogenization (CH2) formulation contains the second gradient of the displacement field, thus
introducing a length-scale associated with the length-scale of the underlying unit cell, making it possible to capture size and
non-local effects [31, 43]. The formulation of the micro- and macroscopic problem as well as their scale coupling employed in
this work is discussed in the subsections below. A schematic sketch of the two-scale problem is depicted in Fig. 1.

2.1 Macroscopic Problem

In CH2, the macroscopic problem is based on a strain gradient formulation [31, 43] to model non-local effects of the microstruc-
ture. Consider a body Ω ⊂ Rd with outer boundaries ∂Ω, d = 2, 3 the space dimension, and a position vector x ∈ Ω. The
governing partial differential equation (PDE) has the form (with body forces neglected for brevity) [22],

∇x · (P(F,G,µ)T – (∇x ·Q(F,G,µ))T ) = 0, (1)
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F I G U R E 1 Two-scale formulation in second-order computational homogenization. At every macroscopic point, the
deformation gradient F and its gradient G are used to prescribe boundary conditions for the microscopic problem which, after
solving, returns an effective stress P and higher-order stress Q. The parameter µ describes the geometry of the RVE. More
information on µ are provided in Section 2.2.

where F := I + (∇xu)T is the macroscopic deformation gradient with u(x) being the macroscopic displacement field and I the
identity tensor, G := ∇xF is the gradient of the deformation gradient, i.e., a third-order tensor with symmetry G ijk = Gkji, and
µ contains additional geometrical parameters; P denotes the second-order first Piola-Kirchhoff (1PK) stress tensor, and Q is
a third-order tensor often referred to as the higher-order or double stress tensor [31, 43]. By multiplying Eq. (1) with a test
function δu and utilizing the divergence theorem, the following weak form can be derived [24],∫

Ω

(
P(F,G,µ) : δFT + Q(F,G,µ) ... δG

)
dx =

∫
∂ΩN

(
δu · (P – ∇x ·Q) · n + n ·Q : δFT) dx, (2)

where δF := (∇xδu)T and δG := ∇xδF are introduced, ∂ΩN denotes the boundaries with prescribed Neumann boundary
conditions, and n is the outward unit normal vector. In addition, there are Dirichlet boundaries ∂ΩD, with ∂ΩD ∩ ∂ΩN = ∅ and
∂ΩD ∪ ∂ΩN = ∂Ω, where values of the displacement u and its gradient ∇xu are prescribed. In this work, we consider only
Dirichlet boundary conditions, so that the terms on the right hand side vanish and Eq. (2) becomes∫

Ω

(
P(F,G,µ) : δFT + Q(F,G,µ) ... δG

)
dx = 0. (3)

The relation between (P,Q) and (F,G,µ) is established by solving the microscopic boundary value problem, which is defined
on a representative volume element (RVE) and discussed in more detail in Section 2.2. In particular, we assume that µ contains
parameters that describe the geometry of the RVE.

In order to solve the problem in Eq. (3), the second gradient of u is required. To this end, Lesicar et al. [27] employed
36 degrees of freedom (DOF) C1-triangular elements. Wu et al. [46] utilized an enriched discontinuous Galerkin method
combined with a penalty method to enforce C1-continuity weakly. Other works reformulate the problem in Eq. (3) with a
mixed formulation instead [22, 29, 38], which is used also in this work. The idea of the mixed formulation is to introduce an
independent deformation gradient field F̂ which is coupled with the deformation gradient computed from the displacement field
through Lagrange multipliers L. With F̂, its gradient Ĝ := ∇xF̂, and L, the problem in Eq. (3) can be rewritten as

Π(u, F̂, L) :=
∫
Ω

(
P(F, Ĝ,µ) : δFT + Q(F, Ĝ,µ) ... δĜ + δ(L : (F̂T – FT ))

)
dx = 0. (4)
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Inserting δF = (∇xδu)T , δĜ = ∇xδF̂ and

δ(L : (F̂T – FT )) = (F̂T – FT ) : δL + L :
(
δF̂T – ∇xδu

)
(5)

into Eq. (4) yields

Π(u, F̂, L) =
∫
Ω

(
P : ∇xδu + Q ... ∇xδF̂ + (F̂T – FT ) : δL + L :

(
δF̂T – ∇xδu

))
dx

=
∫
Ω

(
(P – L) : ∇xδu + L : δF̂T + Q ... ∇xδF̂ + (F̂T – FT ) : δL

)
dx,

(6)

where arguments of P and Q have been omitted for brevity. Linearization of Eq. (6), required by the macroscopic iterative
Newton solver, around a state (u, F̂, L) in directions (∆u, 0, 0), (0,∆F̂, 0) and (0, 0,∆L), yields

DΠ
∣∣
u,F̂,L
· (∆u, 0, 0) =

∫
Ω

(
∇x∆u : ∇FP : ∇xδu + ∇x∆u : ∇FQ

... ∇xδF̂ – ∇x∆u : δL
)

dx, (7)

DΠ
∣∣
u,F̂,L
· (0,∆F̂, 0) =

∫
Ω

(
∇x∆F̂ ... ∇Ĝ

P : ∇xδu + ∇x∆F̂ ... ∇Ĝ
Q ... ∇xδF̂ + ∆F̂T : δL

)
dx, (8)

DΠ
∣∣
u,F̂,L
· (0, 0,∆L) =

∫
Ω

(
–∆L : ∇xδu + ∆L : δF̂T

)
dx, (9)

where ∇FP, ∇FQ, ∇
Ĝ

P, and ∇
Ĝ
Q are the macroscopic tangents evaluated at (F(u), Ĝ(F̂),µ). Given a suitable discretization

for u, F̂ and L, the system of Eqs. (6) to (9) can be solved with the finite element method, when a constitutive relation between
(P,Q) and (F, Ĝ,µ) is established. Different combinations of displacement, deformation gradient and Lagrange multiplier shape
functions were considered and tested in Kouznetsova et al. [22]. For the numerical examples in this work, quadrilateral elements
with eight displacement nodes, four deformation gradient nodes and one Lagrange multiplier node per element are chosen.

2.2 Parameterized Microscopic Problem

To evaluate P and Q and their derivatives in Eqs. (6) to (9), the microscopic problem needs to be solved at every macroscopic
integration point. Here, we follow the formulation as presented in Kouznetsova et al. [23], where the microscopic problem is
modelled as a standard Cauchy continuum. For brevity, a fixed macroscopic material point is assumed, and the dependence on
the macroscopic coordinates is omitted in the definition of the microscopic problem provided below.

Consider a family of domains Ωµ ⊂ Rd, parameterized by parameters µ ∈ P with parameter space P and spanned by position
vectors xµ ∈ Ωµ, see Fig. 2. For all µ, the outer boundaries and topology of Ωµ are assumed to remain fixed. As a consequence,
the volume

∣∣Ωµ
∣∣ remains constant for all µ. Additionally, it is assumed that there exists a parent domain Ωp := Ωµp with

µp ∈ P, which can be transformed into any Ωµ with a transformation map Φµ : Ωp → Ωµ, xp 7→ xµ, transformation gradient
Fµ := (∇xpΦµ)T and dxµ =

∣∣det Fµ

∣∣ dxp. For a fixed domain, i.e., Ωp = Ωµ, the transformations Φµ are identity maps, with
Fµ = I and

∣∣det Fµ

∣∣ = 1.
To obtain such transformation maps Φµ, we solve the auxiliary problem as proposed in [15]. The key idea of the method

is to pose an auxiliary linear elasticity problem on the parent domain that can be solved for the transformation displacement
d, which can then be utilized to compute the transformation Φµ with Φµ(xp) = I + d(xp). The displacement d is fixed on
the outer boundaries with zero Dirichlet boundary conditions and prescribed on parts of the domain that are known from the
parameterization (as an example, the circular interface of Ωp in Fig. 2 is deformed into the elliptical interfaces in Ωµ1 and Ωµ2 ).
Subsequently, the auxiliary problem can be solved to find the entire field d(xp). More details can be found in [15]. For all RVEs
considered in this work, the auxiliary problem is solved with Eaux = 1 MPa and ξaux = 0.25 (thus defining the elasticity tensor of
the auxiliary problem).

The microscopic displacement field u(xµ) is assumed to consist of a mean field u(xµ) and a fluctuation field w(xµ), i.e.,
u(xµ) = u(xµ) + w(xµ). The mean field u is fully prescribed through the macroscopic quantities (F, Ĝ) with

u(xµ) := (F – I) · xµ +
1
2

(xµ · Ĝ) · xµ. (10)
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F I G U R E 2 Family of RVE domains Ωµ parameterized through parameters µ. A parent domain Ωp can be defined which
can be transformed through transformations Φµ into any of the RVE domains Ωµ.

Subsequently, the microscopic deformation gradient can be defined as

F := I + (∇xµu)T = F + xµ · Ĝ + (∇xµw)T . (11)

The governing microscopic PDE is given by,

∇xµ · PT (F) = 0, (12)

which can be written into its weak form by multiplying with a test function δw and applying the divergence theorem,

Π(w) =
∫
Ωµ

∇xµδw : P
(

F + xµ · Ĝ + (∇xµw)T
)

dxµ != 0, (13)

where P is the microscopic second-order 1PK stress tensor, and the macroscopic quantities (F, Ĝ) act as external forcing terms.
For now, no constitutive model at the microscale level is specified, but it is assumed that P is a non-linear function of the
deformation gradient F. The microscopic problem can thus be stated as follows: given (F, Ĝ,µ), find w that fulfills Eq. (13) for
all δw. To remove the dependence of the integral on parameters µ, Eq. (13) can be transformed to the parent domain with the
transformation map Φµ, i.e.,

Π(wp) =
∫
Ωp

(
F–T
µ ·
(
∇xpδwp)) : Pp(Fp)

∣∣det Fµ

∣∣ dxp != 0, (14)

where wp(xp) := (w ◦Φµ)(xp) = w(xµ), δwp(xp) := δw(xµ), Pp(xp) := P(xµ), and

Fp = F + Φµ(xp) · Ĝ +
(
∇xp wp)T · F–1

µ . (15)

Hereafter, we write xµ(xp) instead of Φµ(xp) for brevity. To find the wp that fulfills Eq. (14) for all δwp, the linearization
of Eq. (14) around a state wp in direction ∆wp is required,

DΠ
∣∣
wp · (∆wp) =

∫
Ωp

(
F–T
µ ·
(
∇xp∆wp)) : Ap(Fp) :

(
F–T
µ ·
(
∇xpδwp)) ∣∣det Fµ

∣∣ dxp, (16)

where Ap := ∇FPp is the fourth-order stiffness tensor on the parent domain.
To ensure a proper scale transition of the kinematic quantities, different authors derived and proposed additional constraints

on the fluctuation field wp. In Kouznetsova et al. [22], periodic boundary conditions (PBC) for wp are assumed and the following
constraints are derived for a rectangular RVE ∫

∂Ωp
top

wpdxp = 0, (17)∫
∂Ωp

right

wpdxp = 0, (18)
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where ∂Ωp
top and ∂Ωp

right denote the top and right edge of the RVE Ωp, see Fig. 2. Due to PBC, the same conditions hold for the
bottom and left edge. In addition, all four corners of the RVE are fixed, i.e., wp = 0. Since it is assumed that Ωµ has fixed outer
boundaries for all µ, constraints in Eqs. (17) and (18) are independent of µ. In subsequent works, other authors developed slightly
different formulations (see, e.g., [6, 29, 38, 46, 47]). In [38], the authors compared different formulations and pointed out that
fixing the corners in the formulation in Kouznetsova et al. [22] leads to stress concentrations and artificial effects at the corners.
Instead of fixing the corners, other formulations introduce an additional equation that constrains the rigid body motion with∫

Ωµ

wdxµ =
∫
Ωp

wp
∣∣det Fµ

∣∣ dxp = 0. (19)

The complete microscopic model employed in this work consists of Eqs. (14) to (19) together with PBC for wp. Lagrange
multipliers are used to enforce the constraints in Eqs. (17) to (19) and PBC, resulting in a saddle point problem.

To solve the microscopic problem, the fluctuation displacement is typically discretized with finite elements (FE). We thus
approximate

wp(xp) ≈ N(xp)w, (20)

where N(xp) ∈ Rd×N denotes the FE shape functions, w ∈ RN the coefficients of the discretized displacement field, andN the
total number of DOFs. Subsequently, the weak form in Eq. (14), together with the constraints, can be written as

f (w) + CTm = 0,

Cw = 0,
(21)

where f ∈ RN is the global internal force column matrix, the constraint matrix C ∈ RNc×N is derived from the constraints
in Eqs. (17) to (19) and PBC, with Nc the number of constraint equations, and m ∈ RNc are the corresponding Lagrange
multipliers. Using Newton’s method, the non-linear system of equations in Eq. (21) can be solved for w and m,[

K(wk) CT

C 0

] [
∆w

m

]
=
[

–f (wk)
0

]
,

wk+1 = wk + ∆w,
(22)

where K ∈ RN×N is the global stiffness matrix computed from Eq. (16), and k is the Newton iteration number. Eq. (22) is
repeated until

∥∥f (wk) + CTm
∥∥

2 ≤ εnewton with εnewton a user-defined tolerance. For more information on the FE method and
discretization of weak forms, we refer to [2].

2.3 Effective Quantities

After the microscopic problem has been solved and a solution w∗p obtained, the effective stress P, higher-order stress Q and
their corresponding derivatives with respect to F and Ĝ must be computed. For conciseness, the following microscopic quantities
are introduced:

F∗p := F + xµ · Ĝ +
(
∇xp w∗p)T · F–1

µ , (23)

P∗p := Pp(F∗p), (24)

A∗p := Ap(F∗p), (25)

which correspond to the microstructural deformation gradient, 1PK stress, and related stiffness tensors evaluated at the solution
on the parent domain. Expressions for the effective stress P and higher-order stress Q were derived in [23] which, after
transformation to the parent domain, yield

P :=
1∣∣Ωp
∣∣ ∫

Ωp
P∗p ∣∣det Fµ

∣∣ dxp, (26)

Q :=
1∣∣Ωp
∣∣ ∫

Ωp

1
2

(
P∗pT ⊗ xµ + xµ ⊗ P∗p

) ∣∣det Fµ

∣∣ dxp. (27)
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The effective stiffness components, derived by differentiating the above stress and higher-order stress quantities then yield (in
index notation)

∂Pij

∂Fkl
=

1∣∣Ωp
∣∣ ∫

Ωp

∂P∗p
ij

∂Fkl

∣∣det Fµ

∣∣ dxp, (28)

∂Pij

∂Ĝmno

=
1∣∣Ωp
∣∣ ∫

Ωp

∂P∗p
ij

∂Ĝmno

∣∣det Fµ

∣∣ dxp, (29)

∂Qijk

∂Fmn
=

1∣∣Ωp
∣∣ ∫

Ωp

1
2

(
∂P∗p

ji

∂Fmn
xµk + xµi

∂P∗p
jk

∂Fmn

)∣∣det Fµ

∣∣ dxp, (30)

∂Qijk

∂Ĝmno

=
1∣∣Ωp
∣∣ ∫

Ωp

1
2

(
∂P∗p

ji

∂Ĝmno

xµk + xµi
∂P∗p

jk

∂Ĝmno

)∣∣det Fµ

∣∣ dxp. (31)

In the above,

∂P∗p
ij

∂Fkl
= A∗p

ijmn

(
δmkδnl +

∂

∂Fkl

(
∂w∗p

m

∂xp
r

)
F–1
µ,rn

)
, (32)

and

∂P∗p
ij

∂Ĝmno

= A∗p
ijkl

∂
(

xµr Ĝrkl

)
∂Ĝmno

+
∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F–1
µ,sl


= A∗p

ijkl

(
xµr δrmδknδlo +

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F–1
µ,sl

)

= A∗p
ijkl

(
xµmδknδlo +

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F–1
µ,sl

)
.

(33)

To determine
∂

∂Fkl

(
∂w∗p

m

∂xp
r

)
and

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
, Eq. (14) is differentiated with respect to F and Ĝ to derive linear tangent

problems that can be solved to find the corresponding sensitivities. As an example, for one particular component Fkl (where the
indices k and l are assumed to be temporarily fixed), the differentiation yields

∂Π(w∗p)
∂Fkl

=
∫
Ωp

(
F–T
µ ·
(
∇xpδwp)) :

∂P∗p

∂Fkl

∣∣det Fµ

∣∣ dxp = 0, (34)

which can be rearranged with Eq. (32) as∫
Ωp

(
F–T
µ ·
(
∇xp qkl

))
: A∗p :

(
F–T
µ ·
(
∇xpδwp)) ∣∣det Fµ

∣∣ dxp

= –ET
kl :
(∫

Ωp
A∗p :

(
F–T
µ ·
(
∇xpδwp)) ∣∣det Fµ

∣∣ dxp
) (35)

where a new auxiliary vector field qkl :=
∂w∗p

∂Fkl
is defined, reflecting the sensitivity of the microfluctuation field with respect to the

change of the macroscopic deformation gradient, and Ekl ∈ Rd×d is a second-order tensor with all entries zero except for the kl-
th entry which is 1. The linear problem of Eq. (35) is solved for all combinations k, l = 1, . . . , d to obtain qkl for each component

of F. The same procedure is followed for Ĝ. With an auxiliary vector field qmno :=
∂w∗p

∂Ĝmno

, the differentiation of Eq. (14) for one
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particular component Ĝmno (where the indices m, n and o are assumed to be temporarily fixed) yields, together with Eq. (33),∫
Ωp

(
F–T
µ ·
(
∇xp qmno

))
: A∗p :

(
F–T
µ ·
(
∇xpδwp)) ∣∣det Fµ

∣∣ dxp

= –ET
mno

...

(∫
Ωp

xµ ⊗A∗p :
(
F–T
µ ·
(
∇xpδwp)) ∣∣det Fµ

∣∣ dxp
)

,
(36)

where Emno ∈ Rd×d×d is a third-order tensor with all entries zero except for the mno-th entry which is 1. The linear problem
of Eq. (36) is then solved for all combinations m, n, o = 1, . . . , d to obtain qmno for each component of Ĝ.

3 REDUCED-ORDER MODELING

Since the microscopic problem is solved at every macroscopic integration point, its solution must be efficient. Due to the often
complicated RVE geometries, a fine discretization (using, e.g., finite elements) is required, resulting in a large number of DOFs
and integration points, which entail a costly solution. Furthermore, computing the effective quantities for a fine RVE mesh
presents another computationally expensive operation. To construct a reduced-order model (ROM) for a more efficient solution,
we employ two reduction techniques: (1) we utilize proper orthogonal decomposition (POD) to reduce the number of DOFs
in Section 3.1; and (2) to establish a more efficient integration scheme, we propose in Section 3.2 a novel hyperreduction
algorithm that uses ideas of the empirical cubature method [16], which is specifically suited for the second-order CH formulation.

3.1 Proper Orthogonal Decomposition

To reduce the number of DOFs, the fluctuation displacement field wp is approximated with a reduced basis [18, 35], i.e.,

wp ≈
N∑

n=1

anvn, (37)

where N is typically much smaller than N , i.e., N ≪ N . The global basis functions, {vn}N
n=1, are obtained by applying POD to a

set of pre-computed snapshots of wp for different parameter values (F, Ĝ,µ). Since each of the basis functions is computed from
a linear combination of pre-computed periodic solutions that fulfill the constraints in Eqs. (17) to (19), every basis function is
periodic and also fulfills Eqs. (17) and (18). This implies that any solution wp that is represented by Eq. (37) always fulfills these
conditions. However, the basis functions will only fulfill the constraint in Eq. (19) if a fixed geometry is assumed for the RVE, i.e.,
µ is constant. For varying geometries, the constraint is violated due to the influence of

∣∣det Fµ

∣∣. Nevertheless, in our numerical
examples, tests with and without enforcing Eq. (19) through Lagrange multipliers were run and only insignificant differences of
the solutions were observed. For that reason, we do not enforce Eq. (19) for the ROM. This has the added advantage that no
constraints have to be considered for the ROM and, thus, more efficient solvers for the resulting system of linear equations can
be utilized.

By inserting Eq. (37) into Eqs. (14) and (16) and assuming a Galerkin projection, the components of the internal force f ∈ RN

and global stiffness matrix K ∈ RN×N can be computed:

fi(a) :=
∫
Ωp

(
F–T
µ · (∇xp vi)

)
: Pp(Fp)

∣∣det Fµ

∣∣ dxp, (38)

Kij(a) :=
∫
Ωp

(
F–T
µ ·
(
∇xp vj

))
: Ap(Fp) :

(
F–T
µ · (∇xp vi)

) ∣∣det Fµ

∣∣ dxp, (39)

Fp(a) = F + xµ · Ĝ +

(
N∑

n=1

an(∇xp vn)T

)
· F–1

µ , (40)

for all i, j = 1, . . . , N. The column matrix a = [a1, . . . , aN]T contains the unknown coefficients to be solved for.



10

3.2 Hyperreduction

While the reduced system of Eqs. (38) and (39) only has N DOFs, computing the integrals in Eqs. (38) and (39) (as well
as Eqs. (26) to (33), (35) and (36) for the effective quantities) requires integration over the whole full finite element mesh
(typically with many Gauss quadrature points). To accelerate this computation, a more efficient integration scheme (i.e., fewer
integration points and corresponding weights) is sought that closely approximates the numerical integration with Gaussian
quadrature of the following four quantities:

• Internal force f = [f1, . . . , fN]T in Eq. (38):

fi =
∫
Ωp

(
F–T
µ · (∇xp vi)

)
: Pp ∣∣det Fµ

∣∣ dxp

=
∫
Ωp

∇xp vi : Wpdxp,
(41)

for all i = 1, . . . , N and where the weighted stress Wp := Pp · F–T
µ

∣∣det Fµ

∣∣ is defined.
• Effective stress P in Eq. (26):

P =
1∣∣Ωp
∣∣ ∫

Ωp
Pp ∣∣det Fµ

∣∣ dxp

=
1∣∣Ωp
∣∣ ∫

Ωp
Wp · FT

µdxp

=
1∣∣Ωp
∣∣ ∫

Ωp
Wpdxp,

(42)

where, in the last line the invariance of the integral with respect to FT
µ was used, which was proven in [15, Appendix A]. This

implies that the accurate integration of the effective stress is equivalent to the accurate integration of the weighted stress.
• Effective higher-order stress Q in Eq. (27):

Q =
1∣∣Ωp
∣∣ ∫

Ωp

1
2

(
PpT ⊗ xµ + xµ ⊗ Pp

) ∣∣det Fµ

∣∣ dxp

=
1∣∣Ωp
∣∣ ∫

Ωp
Ypdxp,

(43)

where the weighted higher-order stress Yp :=
1
2

(
PpT ⊗ xµ + xµ ⊗ Pp

) ∣∣det Fµ

∣∣ is defined.
• Volume:

V :=
∣∣Ωp
∣∣ =
∫
Ωp

dxp. (44)

Even though the integration of the volume does not necessarily have to be accurate, it helps to stabilize the algorithm used to
find the new integration points. In particular, it leads to fewer weights that are equal to 0 during the solution of the non-negative
least squares problem introduced later in Eq. (58).

3.2.1 Algorithm

To find an efficient integration scheme, we use concepts from the empirical cubature method (ECM), which was previously
applied to identify integration points and weights for an efficient integration of the internal force, as proposed by Hernández
et al. [16] and recently extended to varying geometries in Guo et al. [14]. In the first step, similarly to the fluctuation field wp,
snapshots of the weighted stress Wp and weighted higher-order stress Yp are collected for different parameter values (F, Ĝ,µ).
Utilizing POD, two sets of basis functions for Wp and Yp, {Bm}M

m=1 and {Hl}L
l=1, are found, with which Wp and Yp can be
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approximated, i.e.,

Wp ≈
M∑

m=1

αmBm, (45)

Yp ≈
L∑

l=1

βlHl. (46)

Inserting Eqs. (45) and (46) into Eqs. (41) to (43) yields

fi ≈
M∑

m=1

αm

∫
Ωp

∇xp vi : Bmdxp, ∀i = 1, . . . , N, (47)

P ≈
M∑

m=1

αm
1∣∣Ωp
∣∣ ∫

Ωp
Bmdxp, (48)

Q ≈
L∑

l=1

βl
1∣∣Ωp
∣∣ ∫

Ωp
Hldxp. (49)

Since Eqs. (47) to (49) should be accurately integrated for any values of αm and βl, all the occurring integrals in the sums should
be approximated accurately. Together with the volume equation in Eq. (44), integration points and weights are sought that
approximate these NM + d2M + d3L + 1 integrals accurately. The factors d2 and d3 arise due to the number of components of P
and Q.

Consider for now the full set of Gaussian integration points {x̂q, ŵq}Q̂
q=1 corresponding to the fully resolved discretization,

where Q̂ is the total number of Gauss integration points, x̂q their positions and ŵq their weights. By defining

1 :=
[
1, . . . , 1

]T ∈ RQ̂, (50)

and the flattened basis functions (in 2D, i.e., d = 2),

Bm :=
[
Bm,11, Bm,12, Bm,21, Bm,22

]T ∈ Rd2
, ∀m = 1, . . . , M, (51)

Hl :=
[
Hl,111,Hl,112,Hl,121,Hl,122,Hl,211,Hl,212,Hl,221,Hl,222

]T ∈ Rd3
, ∀l = 1, . . . , L, (52)

the numerical approximation of the NM + d2M + d3L + 1 integrals with the full Gauss quadrature can be written in algebraic form
A1

A2

A3

1T


︸ ︷︷ ︸

=:A

ŵ1
...

ŵQ̂


︸ ︷︷ ︸

=:ŵ

=


b1

b2

b3

V


︸ ︷︷ ︸

=:b

, (53)

where

b1 =



∫
Ωp

∇xp v1 : B1dxp

...∫
Ωp

∇xp v1 : BMdxp

...∫
Ωp

∇xp vN : B1dxp

...∫
Ωp

∇xp vN : BMdxp



∈ RNM , b2 =


∫
Ωp

B1dxp

...∫
Ωp

BMdxp

 ∈ Rd2M , b3 =


∫
Ωp

H1dxp

...∫
Ωp

HLdxp

 ∈ Rd3L,
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and

A1 =



(∇xp v1 : B1)
∣∣̂
x1

. . . (∇xp v1 : B1)
∣∣̂
xQ̂

...
...

(∇xp v1 : BM)
∣∣̂
x1

. . . (∇xp v1 : BM)
∣∣̂
xQ̂

...
...

(∇xp vN : B1)
∣∣̂
x1

. . . (∇xp vN : B1)
∣∣̂
xQ̂

...
...

(∇xp vN : BM)
∣∣̂
x1

. . . (∇xp vN : BM)
∣∣̂
xQ̂


∈ RNM×Q̂,

A2 =

B1(x̂1) . . . B1(x̂Q̂)
...

...
BM(x̂1) . . . BM(x̂Q̂)

 ∈ Rd2M×Q̂, A3 =

H1(x̂1) . . . H1(x̂Q̂)
...

...
HL(x̂1) . . . HL(x̂Q̂)

 ∈ Rd3L×Q̂.

The system in Eq. (53) can be equivalently rewritten as
Â1

Â2

Â3

1T


︸ ︷︷ ︸

=:Â

ŵ =


0

0

0

V


︸︷︷︸

=:b̂

, (54)

with

Â1 = A1 –
1
V
b1 ⊗ 1, (55)

Â2 = A2 –
1
V
b2 ⊗ 1, (56)

Â3 = A3 –
1
V
b3 ⊗ 1, (57)

which is convenient for the definition of residuals of the algorithm discussed below.
The goal now is to select a subset of integration points {xq}Q

q=1 from the set of all integration points, i.e., {xq}Q
q=1 ⊂ {x̂q}Q̂

q=1,
such that Q ≪ Q̂, with corresponding weights {wq}Q

q=1 obtained by minimizing the following weighted non-negative least
squares residual,

wLS = arg min
w≥0

∣∣∣∣∣∣b̂ – Â•Iw
∣∣∣∣∣∣
Σ

= arg min
w≥0

∣∣∣∣∣∣Âŵ – Â•Iw
∣∣∣∣∣∣
Σ

= arg min
w≥0

∣∣∣∣r̂(w)
∣∣∣∣
Σ

,

(58)

where ∥a∥Σ := aTΣa and the residual

r̂(w) := Âŵ – Â•Iw (59)
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are defined, I denotes a set of non-repeating indices with
∣∣I∣∣ = Q and Â•I is the submatrix of Â with Q selected columns

according to the entries of I. The matrix Σ is a weighting matrix with a block diagonal structure

Σ =


c1Σ1 0 0 0

0 c2Σ2 0 0
0 0 c3Σ3 0
0 0 0 Σ4

 , (60)

where each block corresponds to one of the approximated quantities defined as,

Σ1 = diag(σw
1 σ

W
1 , . . . ,σw

1 σ
W
M , . . . ,σw

Nσ
W
1 , . . . ,σw

Nσ
W
M ) ∈ RNM×NM , (61)

Σ2 = diag(σW
1 , . . . ,σW

1︸ ︷︷ ︸
d2 times

, . . . ,σW
M , . . . ,σW

M︸ ︷︷ ︸
d2 times

) ∈ Rd2M×d2M , (62)

Σ3 = diag(σY
1 , . . . ,σY

1︸ ︷︷ ︸
d3 times

, . . . ,σY
L , . . . ,σY

L︸ ︷︷ ︸
d3 times

) ∈ Rd3L×d3L, (63)

Σ4 = diag(1) ∈ R1×1. (64)

The entries σw
i ,σW

m ,σY
l for all i = 1, . . . , N, m = 1, . . . , M, and l = 1, . . . , L correspond to the ordered normalized singular values

of the POD of the fluctuation field wp, weighted stress Wp and weighted higher-order stress Yp, with σw
1 = σW

1 = σY
1 = 1. The

parameters c1, c2, c3 enable control over the importance of each of the approximated quantities. Their influence is illustrated
in Section 4. The blocks of the weighting matrix Σ are chosen in this fashion to promote the integration scheme to approximate
the basis functions corresponding to larger singular values more accurately than the ones corresponding to smaller singular
values. The indices in I are selected one by one, similarly to the greedy algorithm presented in [16]. The exact algorithm on the
selection is provided in Algorithm 1. Here, the residual r̂ is split into four parts, i.e.,

r̂ =
[
r̂T

1 , r̂T
2 , r̂T

3 , r̂T
4 ,
]T

(65)

where r̂i for i = 1, . . . , 4 are the residuals for each quantity. Independent residuals are introduced to check that each quantity is
approximated accurately up to a precision, depending on the choice of tolerances ε1, ε2, ε3, ε4, with,

r1 :=

∣∣∣∣r̂1
∣∣∣∣
Σ1

trΣ1
< ε1, r2 :=

∣∣∣∣r̂2
∣∣∣∣
Σ2

trΣ2
< ε2, r3 :=

∣∣∣∣r̂3
∣∣∣∣
Σ3

trΣ3
< ε3, r4 :=

∣∣∣∣r̂4
∣∣∣∣
Σ4

V
< ε4, (66)

where ri for i = 1, . . . , 4 are the standardized norms of the residuals. As will be shown in Section 4, all ri generally decay with
different rates, which can, however, be tuned with the parameters c1, c2, c3. The lowest number of quadrature points can be
achieved when all residuals reach the desired tolerances at the same time. This will be demonstrated in Section 4.

4 NUMERICAL EXAMPLES

To examine and illustrate different features of the proposed ROM, two macroscopic example problems with a parameterized
microstructure are studied in two dimensions and under plane strain conditions. The results are compared against the full
two-scale second-order CH solution (later referred to as CH2) as well as the direct numerical simulation (DNS), where the
microstructure is fully resolved at the macroscale. The ROM is discussed in detail in the first example, whereas the second
example shows a possible application, in which a full DNS might not be feasible anymore (especially in three dimensions), but
the ROM computes an excellent approximation in a reasonable amount of time. Note that the examples considered here could
potentially also be solved with a satisfactory accuracy using first-order CH (CH1). However, as the focus of this work is on the
reduced-order modeling of CH2, no comparisons with CH1 are conducted. A systematic and quantitative comparison of CH1
and CH2 applied to mechanical metamaterials can be found in [40].

For both examples, a metamaterial-based RVE with four identical holes is selected, motivated by Specimen 1 in Bertoldi et
al. [4]. The size of the RVE is 2 mm × 2 mm and the local coordinate system is chosen in the center of the domain, i.e., the
domain of the RVE is given by [–1 mm, 1 mm]2, see Fig. 3. Each hole is described by a cubic B-spline with eight control points,
of which the coordinates are parameterized by one geometrical parameter µ = {ζ}. For the top right hole, the coordinates
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Algorithm 1 Integration point selection algorithm

Input: Â, b̂,Σ, ε1, ε2, ε3, ε4, kmax
Output: wLS, I
Initialize empty list of selected columns I ← ∅
Initialize list of candidate indices C ← {1, . . . , Q̂}
Set iteration number k← 0
Set initial residual r̂← b̂

while k < kmax do
k← k + 1
Find the column i of Â with

i = arg max
j∈C

ÂT
•jΣr̂√

ÂT
•jΣÂ•j

Add selected index I ← I ∪ {i}
Remove selected index from candidates C ← C \ {i}
Solve Eq. (58) for wLS

Compute residuals r̂i according to Eq. (59)
if all conditions in Eq. (66) are fulfilled then

return wLS, I ▷ Algorithm is converged
end if

end while

(in mm) of the control points are (0.05 + ζ, 0.5), (0.125 – ζ, 0.125 – ζ), (0.5, 0.05 + ζ), (0.875 + ζ, 0.125 – ζ), (0.95 – ζ, 0.5),
(0.875 + ζ , 0.875 + ζ), (0.5, 0.95 – ζ), (0.125 – ζ , 0.875 + ζ). The coordinates of the control points for the other holes are obtained
by shifting the coordinates of the top right hole by 1 mm in the x- and/or y-direction, and the same ζ is assumed for each hole.
The geometry of the RVE is shown for different values of ζ = {–0.075 mm, –0.035 mm, 0.025 mm, 0.055 mm} in Fig. 3. The
parent domain Ωp, chosen with ζ = 0.025 mm, and its simulation mesh, consisting of 4882 DOFs and 1066 six-noded triangular
elements, are shown in Fig. 3c. A mesh convergence study was conducted to ensure that the effective quantities obtained with
this mesh are converged with respect to the element size. Note that the control points (in orange color) are allowed to lie outside
the RVE domain as long as the resulting B-spline curves do not intersect with the outer boundary of the RVE.

Depending on ζ, the shape of the holes changes from a circular shape to a square-like one. For circular holes, it is known
that the RVE buckles locally under compression due to the symmetry and exhibits auxetic behavior [4], i.e., under uniaxial
compression in one direction the RVE contracts in the perpendicular direction. On the other hand, square-like holes promote
global buckling on the macroscale instead of local buckling. This is illustrated in Section 4.1, where significantly different
behaviors of the macrostructure are observed when varying ζ.

The RVE material is modelled as a hyperelastic Mooney–Rivlin material with strain energy density function

W(F) = C1(I1 – 3) + C2(I1 – 3)2 – 2C1 log J +
K
2

(J – 1)2, (67)

where I1 := tr C is the first invariant of the right Cauchy–Green tensor C := FTF and J = det F characterizes the volume change.
The constants C1, C2 and K are material parameters, which are set to C1 = 0.55 MPa, C2 = 0.3 MPa, and K = 55 MPa, according
to the experimental data in Bertoldi et al. [3].

4.1 Uniaxial Compression of a Perforated Plate

In the first example, uniaxial compression of a rectangular perforated plate of size W ×H (width W = 6 mm, height H = 20 mm)
in the longitudinal direction is considered. The top edge is compressed up to 7.5% strain, while the bottom edge is fixed, and the
geometrical parameter ζ is constant throughout the macrostructure. As the reference solution, full DNS solutions, where the
microstructure is fully resolved and for which triangular six-noded elements are used, are computed for various values of ζ. For
each DNS model, the number of elements is approximately 32,000 and number of DOFs 140,000. For ζ = {–0.035 mm, 0.03 mm},
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(a) ζ = –0.075 mm
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(b) ζ = –0.035 mm
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(c) ζ = 0.025 mm
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(d) ζ = 0.055 mm

F I G U R E 3 Example geometries for (a) ζ = –0.075 mm, (b) ζ = –0.035 mm, (c) ζ = 0.025 mm, and (d) ζ = 0.055 mm. The
control points defining the hole shapes are shown in orange and the matrix material in blue. Depending on ζ, the shape of the
holes is more circular or square-like, and the RVE more prone to local or global buckling. The parent domain Ωp is chosen for
ζ = 0.025 mm with a simulation mesh consisting of 1066 six-noded triangular elements with 4882 DOFs.

the undeformed state together with the deformed solutions at 4% and 7.5% strain are shown in Fig. 4. For ζ = –0.035 mm the
macrostructure first buckles locally (patterning of holes) and then globally (entire macrostructure buckles). For ζ = 0.03 mm the
structure first buckles globally and then locally, implying that the overall behavior of the macrostructure changes significantly
for different ζ.

(a) ζ = –0.035 mm (b) ζ = 0.03 mm

F I G U R E 4 DNS solutions for ζ = –0.035 mm in (a), ζ = 0.03 mm in (b). In each panel, the undeformed (left) and deformed
states at 4% (middle) and 7.5% (right) compression are shown. For ζ = –0.035 mm the structure first buckles locally and then
globally, while for ζ = 0.03 mm the structure first buckles globally with subsequent local patterning.

For the homogenized plate, a uniform mesh, consisting of two elements in the horizontal and four elements in the vertical
direction with a total of 32 quadrature points, is chosen, amounting to 32 microscopic problems that must be solved for each
macroscopic Newton iteration. Regarding the boundary conditions, the displacement is fixed at the bottom edge and prescribed
at the top edge with value ũ, while the xx- and yx-components of the deformation gradient are fixed to F̂xx = 1 and F̂yx = 0 at the
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top and bottom edge. To prevent zero energy modes corresponding to the components F̂xy and F̂yy, the deformation gradient at
the bottom left point is fully fixed with F̂ = I.

To construct the ROM, training data must be generated by solving the microscopic problem for different input parameters
(F, Ĝ,µ), which span an 11-dimensional parameter space in 2D. In total, 100 samples are generated randomly for the loading
parameters (F, Ĝ) from a uniform distribution with parameter bounds provided in Table 1. Since the macrostructure is compressed
up to 7.5% in the y-direction and locally higher deformations might occur, the lower bound for Fyy – 1 is chosen as –0.1. Since
the RVE behaves auxetically, the lower bound for Fxx – 1 is also assumed to be –0.1. The upper bound for both Fxx – 1 and Fyy – 1
is chosen as 0.02 to capture some tensile behavior of the RVE. Due to the global buckling, large shear strains might occur and
bounds of [–0.1, 0.1] are chosen for Fxy and Fyx. Bounds for Ĝ are difficult to estimate without prior knowledge. Here, every
component is assumed to range from –0.05 mm–1 to 0.05 mm–1, which for the RVE size of 2 mm× 2 mm can result in maximal
deformations in the range of [–0.1, 0.1] with F – I = xp · Ĝ and xp ∈ Ωp = [–1 mm, 1 mm]2.

Subsequently, all samples are divided into five groups, each with 20 samples and assigned one value of ζ =
{–0.05 mm, –0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}. For each sample, the macroscopic loads are applied to the RVE with
(tF, tĜ), where t ∈ [0, 1] is a parameterization pseudo-time increased linearly from 0 to 1 in 20 equidistant load steps, resulting
in 20 snapshots per sample. In total, 2000 snapshots are obtained which are all used for the construction of the ROM.

T A B L E 1 Parameter bounds used for sampling training data for the ROM. The bounds for F are motivated by the applied
macroscopic compression loads and the auxeticity of the RVE. Bounds for Ĝ are assumed to range from –0.05 mm–1 to
0.05 mm–1.

Fxx – 1 Fxy Fyx Fyy – 1
[–0.1, 0.02] [–0.1, 0.1] [–0.1, 0.1] [–0.1, 0.02]

Ĝxxx [mm–1] Ĝxxy [mm–1] Ĝxyx [mm–1] Ĝxyy [mm–1] Ĝyxy [mm–1] Ĝyyy [mm–1]
[–0.05, 0.05] [–0.05, 0.05] [–0.05, 0.05] [–0.05, 0.05] [–0.05, 0.05] [–0.05, 0.05]

4.1.1 Results

The accuracy and efficiency of the ROM depends on several factors:

• the number of basis functions for the fluctuation displacement N, weighted stress M and weighted higher-order stress L,
• the error tolerances ε1, ε2, ε3 and ε4, and
• the hyperparameters c1, c2 and c3 that control the weighting matrix Σ of the weighted least squares problem in Eqs. (58)

and (60).

To choose an adequate amount of basis functions, the singular values of POD are often utilized, as they give an indication on the
information loss due to the reduction. Given the ordered singular values {σi}NS

i=1 of POD, a criterion can be defined with:

1 –
∑NPOD

i=1 σ2
i∑NS

i=1 σ
2
i

< EPOD, (68)

where NS denotes the total number of training snapshots and EPOD is a user-specified tolerance. The number of basis functions is
then selected to be equal to the smallest NPOD, for which Eq. (68) is fulfilled. For the weighted stress and higher-order stress,
good results were obtained with EPOD = 5 × 10–3, for which M = 28 and L = 28 were found. For the fluctuation field, three
values of EPOD = 1× 10–4, 1× 10–5 and 1× 10–6 were considered, which resulted in N = 48, 78 and 112 basis functions.

Regarding the error tolerances ε1, ε2, ε3 and ε4, numerical tests for different values were carried out and a good balance in
terms of accuracy and efficiency was found for ε1 = ε2 = ε3 = ε4 = 1× 10–4.

The choice of the hyperparameters c1, c2 and c3 affects the rates with which each of the standardized norm of residuals r1,
r2, r3 and r4 (see Eq. (66) for the definition) decreases over the number of selected quadrature points Q. In general, the lowest
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number of quadrature points can be found when c1, c2 and c3 are tuned such that all ri fall below their corresponding tolerances at
roughly the same time. In Fig. 5, the decay of each ri over the selected number of quadrature points with N = 48, M = 28, L = 28
and ε1 = ε2 = ε3 = ε4 = 1 × 10–4 is shown for different choices of c1, c2 and c3. For c1 = c2 = c3 = 1 (see Fig. 5a), it can be
clearly seen that r1 drops much more slowly than r2, r3 and r4, resulting in a total of Q = 543 quadrature points. When increasing
c1 to 10 (see Fig. 5b), r1 drops more quickly, ending up in a total number of Q = 358 quadrature points. Finally, for values of
c1 = 10, c2 = 1.6 and c3 = 1.1 (see Fig. 5c) all tolerances are achieved at roughly the same time with only Q = 297 quadrature
points. For N = 78 and 112, Q = 318 and 337 quadrature points are found when all other hyperparameters are kept constant.

0 200 400
Q

10−7

10−5

10−3

10−1 r1

r2

r3

r4

(a) c1 = 1, c2 = 1, c3 = 1

0 200 400
Q

10−7

10−5

10−3

10−1 r1

r2

r3

r4

(b) c1 = 10, c2 = 1, c3 = 1

0 200 400
Q

10−7

10−5

10−3

10−1 r1

r2

r3

r4

(c) c1 = 10, c2 = 1.6, c3 = 1.1

F I G U R E 5 Decay of standardized norm of residuals r1, r2, r3 and r4 over the number of selected integration points Q with
N = 48, M = 28, L = 28 and ε1 = ε2 = ε3 = ε4 = 1 × 10–4. The hyperparameters c1, c2 and c3 control the rate of decay for
each ri, which results in a different number of required quadrature points: (a) Q = 543, (b) Q = 358, whereas (c) only Q = 297
quadrature points are selected.

To evaluate the accuracy of the ROM for N = 48, 78 and 112 basis functions for the displacement, the two-scale
compression of the perforated plate is solved for ζ = –0.035 mm (recall that the training data was sampled for ζ =
{–0.05 mm, –0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}), and the total resulting reaction force R acting on the top edge is plotted
over the prescribed displacement ũ and compared to the DNS, CH2 and POD solutions in Fig. 6 (R and ũ are normalized with
the width W and height H of the plate to yield nominal quantities). Here, POD denotes the solution obtained with the POD basis
in Eq. (37), but with full integration of the reduced system, i.e., computing the integrals in Eqs. (38) and (39) (as well as Eqs. (26)
to (33), (35) and (36)) with Gauss quadrature. The ROM closely follows the POD solution, showing that the reduced integration
is very accurate. It is also clear that the prebuckling stage and buckling point predicted by CH2 are sufficiently accurate already
for N = 48, but small deviations from the CH2 solution can be observed for increasing ũ in the postbuckling stage. This error is
decreased by increasing N to 78 or 112. Moreover, it can be observed that CH2 predicts a slightly higher prebuckling stiffness
than the DNS, which was also observed in [40], and is unable to predict the second (global) buckling point (at around 6% strain),
illustrating some modeling limitations of the CH2 scheme.

In Fig. 7, a similar comparison is performed for ζ = 0.03 mm with N = 48, 78 and 112. The POD and ROM solutions match
well for all N, but both overestimate the (post-)buckling behavior of the CH2 solution. Even though with increasing N the
buckling point is predicted more accurately, the postbuckling stiffness is captured poorly. This suggests that the generated
training data does not properly cover the kinematics during the postbuckling stage and more representative training data is
required for good approximations. Compared to the DNS solution, CH2 captures the postbuckling stiffness quite accurately,
however, it overpredicts the buckling point, the prebuckling stiffness, and is again unable to detect the second buckling which
occurs at around 4.5% strain.

To demonstrate that the results for ζ = 0.03 mm are improved by employing a more representative training dataset, we
generated another training dataset by employing the following procedure:

1. First, we solved the full CH2 problem with a coarse RVE mesh (142 six-noded elements with 746 DOFs, see Fig. 8a) for
ζ = {–0.05 mm, –0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}.
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(b) N = 78, Q = 318
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ũ/H

0

10

20

30

R
/W

[k
Pa

]

DNS
CH2
POD
ROM

(c) N = 112, Q = 337

F I G U R E 6 Force-displacement curves for ζ = –0.035 mm (i.e., circular holes buckling first locally) for different numbers of
basis functions N for the fluctuation field. The ROM solution closely follows the POD solution, implying that the proposed
hyperreduction algorithm yields accurate results. For increasing number of fluctuation displacement basis functions N, the POD
and ROM solution both approach that of CH2.
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(a) N = 48, Q = 297
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(b) N = 78, Q = 318
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(c) N = 112, Q = 337

F I G U R E 7 Force-displacement curves for ζ = 0.03 mm (i.e., square-like holes buckling first globally) for different numbers
of basis functions N for the fluctuation field. Similarly to ζ = –0.035 mm, the ROM solution closely follows the POD solution.
Both POD and ROM solutions approximate the CH2 solution poorly, implying that the training data is not representative for the
global buckling of the macrostructure.

2. This way, for each value of ζ a loading trajectory of values of {(F, Ĝ)} for each of the 32 macroscale quadrature points is
collected.

3. For each ζ, the microscopic problem is solved with the fine mesh (see Fig. 3c) along all 32 trajectories {(F, Ĝ)}, and
snapshots of the fluctuation displacement wp, weighted stress Wp and higher-order stress Yp are gathered.

4. All snapshots computed with the fine mesh are utilized to construct the ROM.

The resulting ROM for N = 48 displacement basis functions has Q = 278 quadrature points (with M = 28 and L = 28), and
the resulting force-displacement curves for ζ = –0.035 mm and ζ = 0.03 mm are shown in Figs. 8b and 8c. The ROM solution
approaches the CH2 solution nearly perfectly for both cases, showing the importance of the training dataset. Additionally, the
results of the full CH2 solution with the coarse RVE mesh are also shown, which shows much less accurate (post-)buckling
behavior.

All simulations were executed on an Intel® Xeon® Platinum 8260 processor. Computing the DNS solutions for ζ = –0.035 mm
and 0.03 mm took 153 s and 307 s with one thread. The significant differences in computational times are caused by the global
buckling, which requires many more load steps for convergence as compared to the local buckling. The ROM with N = 48, after
the offline stage is completed, took 30 s and 69 s for both simulations with one thread, achieving an online speed-up of 5 times as
compared to the DNS solver. With N = 78 and N = 112, both simulations took 48 s (ζ = –0.035 mm) and 132 s (ζ = 0.03 mm),
and 100 s (ζ = –0.035 mm) and 244 s (ζ = 0.03 mm). Concerning the offline stage of the randomly generated dataset, with one
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(c) ζ = 0.03 mm

F I G U R E 8 (a) Employed coarse RVE mesh for generating a more representative training dataset. The resulting ROM has
N = 48 displacement basis functions and Q = 278 integration points, and its solution closely follows the CH2 solution for
both (b) ζ = –0.035 mm and (c) ζ = 0.03 mm. The result of the full CH2 model with the coarse RVE mesh is also shown for
comparison.

thread, 100 samples with each 20 load steps were computed in 1020 s, and constructing the ROM took another 80 s. For the
more representative training dataset, the generation took significantly longer as full two-scale simulations need to be run. Note
that the offline and online stage with the ROM can easily be parallelized, since all RVEs can be solved independently, which
would increase the speed-up. On the other hand, DNS parallelization is less straightforward and more difficult to achieve. CH2
and POD took much longer as compared to the DNS since the considered scale separation is relatively low.

While this example problem might not be suitable for homogenization since the DNS solution can be obtained quickly, it
shows that the ROM can accurately approximate the POD solution, i.e., the proposed algorithm for finding a sparse integration
scheme works well. Moreover, the POD solution approaches the CH2 solution (provided the training data is representative),
which in turn approximates the DNS well.

4.2 Biaxial Compression of Graded Cruciform

The second example deals with the biaxial compression of a graded cruciform-shaped macrostructure with varying hole shapes
(i.e., spatially varying ζ field) throughout the domain, see Fig. 9. Each side edge has length 30 mm, and the cut out parts at each
corner are quarter circles with a radius of 15 mm. Both example parameterizations shown in Fig. 9 are considered and computed
with the DNS, CH2 and the ROM solver. The discretized DNS problem has for Fig. 9a 3,475,044 DOFs and 800,889 elements,
and 3,627,610 DOFs and 839,580 elements for Fig. 9b. Each side edge is compressed by 2% in the normal direction, while being
fixed in the tangential direction. For CH2 and the ROM, additionally, the xx- and yx-components of the deformation gradient are
fixed to F̂xx = 1 and F̂yx = 0 on the top and bottom horizontal edges, and the xy- and yy-components of the deformation gradient
are fixed to F̂xy = 0 and F̂yy = 1 on the left and right vertical edges. The simulation meshes employed for CH2 and the ROM are
shown in Fig. 10.

Since the deformation of this example is similar to the previous example in Section 4.1, the already trained ROM (with
randomly generated training data, cf. Table 1) is re-used here with N = 48, 78 and 112 displacement basis functions with
Q = 297, 318 and 337 integration points, and referred to as ROM48, ROM78 and ROM112.

4.2.1 Results

Both example geometries are solved with DNS, CH2 and the three ROM solvers (ROM48, ROM78 and ROM112). To compare
the results, the total resulting reaction force R acting on the top edge, normalized with the length of the edge W = 30 mm,
is plotted over the applied displacement ũ, normalized with the total height H = 60 mm, in Fig. 11. For the first geometry
(see Fig. 11a), all ROM solutions recover the CH2 solution nearly perfectly. As compared to the DNS solution, CH2 again predicts
a higher prebuckling stiffness, but the buckling load and postbuckling stage are predicted quite well. For the second geometry
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(a) Geometry 1 (b) Geometry 2

F I G U R E 9 Two geometries are solved with the DNS solver. (a) ζ = 0.03 mm is set for the top right and bottom left part
(in blue), and ζ = –0.05 mm for the top left and bottom right part (orange). (b) ζ = 0.05 mm is set in the center (orange) for
x ∈ [18 mm, 42 mm]× [18 mm, 42 mm] and ζ = –0.075 mm elsewhere (blue). Six-noded triangular elements are employed for
both geometries, resulting in (a) 3,475,044 DOFs and 800,889 elements, and (b) 3,627,610 DOFs and 839,580 elements.

(a) Geometry 1 (b) Geometry 2

F I G U R E 10 Discretization of the homogenized cruciform used for CH2 and ROM. (a) ζ = 0.03 mm is set for the blue
elements and ζ = –0.05 mm for the orange elements. (b) The orange and blue elements correspond to ζ = 0.05 mm and
ζ = –0.075 mm, respectively. The meshes have (a) 48 and (b) 28 elements with four quadrature points each.

(see Fig. 11b), CH2 cannot capture the correct buckling load. Since in this example, the center part is set to ζ = –0.075 mm,
which is outside the training data (sampled from ζ = {–0.05 mm, –0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}), ROM48 is not
able to follow the CH2 solutions closely. The error reduces with N = 78 and 112. For both geometries, both components of
the displacement field at the final loading are shown for the DNS and ROM48 solutions in Figs. 12 and 13, where clearly the
trend and magnitudes of the displacement fields are comparable. Deformed RVEs at selected quadrature points of the ROM48
solutions are also shown, which behave similarly to the DNS at similar location.
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(a) Geometry 1
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F I G U R E 11 Force-displacement curves for both example geometries of Figs. 9 and 10 obtained for DNS, CH2, and three
ROMs with different numbers of basis functions N and quadrature points Q. (a) All ROM solutions are close to the CH2
solution. The CH2 solution approximates the DNS adequately. (b) The ROMs do not recover the CH2 solution accurately, since
ζ = –0.075 mm is outside the training data. For higher numbers of basis functions, the approximation gets increasingly more
accurate, and for ROM112 only small deviations are observed during the postbuckling stage. CH2 is unable to predict the correct
buckling load.

Concerning the run times (using one thread of Intel® Xeon® Platinum 8260), solving both problems with the DNS solver
took 15 129 s and 14 087 s, while with ROM48 it took 164 s and 101 s, implying online speed-ups of 92 and 139 times. With
ROM78, the run times were 369 s and 333 s, meaning speed-ups of 41 and 42 times. With ROM112, the solution took 975 s and
439 s, which still amounts to online speed-ups of 15 and 32 times. The computational costs of the offline stage are the same as
reported for the previous example in Section 4.1. The obtained speed-ups could be greatly increased by using more threads due
to the superior scaling of the multi-scale formulation over the DNS. The run times of CH2 are again much higher than the run
times of DNS.

The DNS solution took several hours (with one thread), mostly because of the detection of instabilities (i.e., checking the
system matrix for negative eigenvalues and eigenvalues close to zero). If a large-scale problem (in 3D) was considered, the
DNS solution might become infeasible, since (1) detecting negative eigenvalues is computationally expensive, and (2) negative
eigenvalues of the system matrix may cause problems for iterative solvers, while direct solvers become too computationally
expensive for such large systems. On the other hand, the ROM solution should remain relatively computationally inexpensive,
since the solver can be easily parallelized by solving all RVE problems at the macroscopic integration points in parallel. An
additional advantage of the ROM is that, after training, different geometrical parameters inside the macrostructure can be easily
tuned, while for the DNS, the meshing can become expensive and challenging, especially for 3D problems. This makes this
ROM an interesting candidate for the material design of buckling structures.

5 CONCLUSIONS

In this work, we proposed a reduced-order model (ROM) for second-order computational homogenization (CH2), based on
proper orthogonal decomposition and a novel hyperreduction method that uses ideas from the empirical cubature method that is
specifically suited for CH2. Several aspects on the derivation of the reduced system, including the treatment of constraints and
geometrical parameterizations, expressions for the effective quantities, and the novel hyperreduction algorithm were discussed.
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F I G U R E 12 Displacement fields for geometry 1 obtained with DNS (top row) and with ROM48 (bottom row). The shear
band forming along the diagonal is clearly captured.

Afterwards, the ROM was tested on two numerical examples, in which the macrostructures are compressed and multi-scale
buckling occurs. The ROM solutions were critically evaluated by comparison against the results obtained by direct numerical
simulation (DNS) and the full CH2 model. The first example demonstrated that the proposed hyperreduction algorithm discovered
integration points and weights that yield accurate results for several parameterizations of the microstructure. The second example
concerned a more complex application, in which the geometry of the microstructures is varied within the macroscopic domain,
and for which the DNS solution takes a substantial amount of time to compute. When employing the ROM for this problem,
speed-ups ranging from 15 to 139 as compared to the DNS were achieved with one thread. These speed-ups could be further
increased by employing more threads, since, in general, the multi-scale problem scales much better than the DNS.

To the best of our knowledge, this work is the first attempt of accelerating an enriched computational homogenization
formulation. Although we proposed a reduced-order model for CH2, we are confident that our findings and employed methods
also extend to other formulations, e.g., based on micromorphic computational homogenization. As different parameterizations of
the microstructure can be treated as well, interesting applications can be realized with this framework, such as two-scale shape
optimization problems, design of materials and uncertainty quantification.
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F I G U R E 13 Displacement fields for geometry 2 obtained with DNS (top row) and with ROM48 (bottom row). The sharp
transition in the center due to the sharp change in ζ is more or less captured.
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